กราฟของสมการเชิงเส้นสองตัวแปร

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟ
tucksaga
tucksaga
Share on twitter
Share on facebook

สารบัญ

กราฟของสมการเชิงเส้นสองตัวแปร คือกราฟแสดงความสัมพันธ์ระหว่างปริมาณสองชุดที่มีความสัมพันธ์เชิงเส้นสองตัวแปรหรือกราฟเส้นตรง ซึ่งจะพบเห็นในชีวิตประจำวันทั้งในด้านวิทยาศาสตร์และสังคมศาสตร์ 

ความหมายของกราฟสมการเชิงเส้นสองตัวแปร

ความสัมพันธ์ระหว่างปริมาณสองชุดที่มีกราฟอยู่ในแนวเส้นตรงเดียวกันเป็นความสัมพันธ์เชิงเส้น พิจารณาความสัมพันธ์ต่อไปนี้

“สามเท่าของจำนวนเต็มจำนวนหนึ่งมากกว่าจำนวนเต็มอีกจำนวนหนึ่งอยู่ 10″

             ถ้าให้ x แทนจำนวนเต็มจำนวนแรก

                      y แทนจำนวนเต็มจำนวนที่สอง

เขียนข้อความข้างต้นเป็นสมการได้เป็น  3x – y  =  10

เมื่อกำหนดค่า x และหาค่า y ที่เป็นไปได้ตามเงื่อนไขของข้อความข้างต้น จะได้ ดังตารางต่อไปนี้

ตารางสองตัวแปรจากตาราง คู่อันดับที่แสดงความสัมพันธ์ระหว่างจำนวนเต็มจำนวนแรกและจำนวนเต็มจำนวนที่สอง คือ  (-10, -40), (-5, -25), (0, -10), (5, 5) และ (10, 20) นำคู่อันดับที่ได้มาเขียนกราฟได้ดังนี้

กราฟสองตัวแปร

 จากตัวอย่างข้างต้น จะเห็นว่า กราฟที่ได้เป็นจุดที่เรียงอยู่ในแนวเส้นตรงเดียวกันความสัมพันธ์ของจำนวนเต็มทั้งสองจึงเป็นความสัมพันธ์เชิงเส้น

สมการของความสัมพันธ์เชิงเส้นที่แสดงความเกี่ยวข้องระหว่างปริมาณสองชุดจะเรียกว่า “สมการเชิงเส้นสองตัวแปร”

นิยาม

 

ลักษณะสำคัญของสมการเชิงเส้นสองตัวแปร AX + By + C = 0 คือ มีตัวแปรสองตัวและต้องไม่มีการคูณกันของตัวแปร เลขชี้กำลังของตัวแปรแต่ละตัวต้องเป็นหนึ่ง สัมประสิทธิ์ตัวใดตัวหนึ่งเป็นศูนย์ได้ แต่สัมประสิทธิ์ของตัวแปรทั้งสองจะเป็นศูนย์พร้อมกันไม่ได้

 

 กรณีที่กำหนดสมการเชิงเส้นสองตัวแปรในรูป Ar + By + C = 0 ถ้าไม่ระบุเงื่อนไขของ x และ y ให้ถือว่า x และ y แทนจำนวนจริงใด ๆ และกราฟของสมการเชิงเส้นสองตัวแปรนี้จะเป็นเส้นตรงที่เรียกว่า “กราฟเส้นตรง”

แก้สมาการของกราฟเชิงเส้นสองตัวแปร

เมื่อกำหนดสมการเชิงเส้นสองตัวแปรให้ เราสามารถหาคู่อันดับ (x,y) ที่เมื่อแทนค่า x และค่า y ในสมการแล้วทำให้สมการเป็นจริง โดยการกำหนดค่า x แล้วหาค่า y จากสมการ ดังตัวอย่างเช่น

สมการเชิงเส้น

แก้สมการเชิงเส้น

เมื่อนำคู่อันดับที่สอดคล้องกับสมการ 5x+3y-10=0 เช่น (-1,5) ,(0,10/3) และ (2,0) มาเขียนกราฟ จะได้กราฟเป็นจุดที่อยู่ในแนวเส้นตรงเดียวกัน ดังนี้

กราฟของสมการเชิยงเส้นสองตัวแปร

ในกรณีที่ไม่ระบุเงื่อนไขของ x และ y ในสมการเช่น 5x+3y-10=0 ให้ถือว่า x และ y แทนจำนวนจริงใดๆ นั่นหมายความว่า ยังมีคู่อันดับ (x,y) เหล่านั้นก็จะอยู่บนเส้นตรงที่เป็นกราฟของสมการนี้ด้วย

คลิปวิดีโอตัวอย่างเรื่องกราฟของสมการเชิงเส้นสองตัวแปร

0

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook

ดีเทอร์มิแนนต์

ดีเทอร์มิแนนต์ ดีเทอร์มิแนนต์ (Determinant) คือ ค่าของตัวเลขที่สอดคล้องกับเมทริกซ์จัตุรัส ถ้า A เป็นเมทริกซ์จัตุรัส จะเขียนแทนดีเทอร์มิแนนต์ของ A ด้วย det(A) หรือ โดยทั่วไปการหาค่าดีเทอร์มิแนนต์ที่เจอในข้อสอบจะไม่เกินเมทริกซ์ 3×3 เพราะถ้ามากกว่า 3 แล้ว จะเริ่มมีความยุ่งยาก **ค่าของดีเทอร์มิแนนต์จะเป็นจำนวนจริงและมีเพียงค่าเดียวเท่านั้นที่จะสอดคล้องกับเมทริกซ์จัตุรัส เช่น เมทริกซ์ B ก็จะมีค่าดีเทอร์มิแนนต์เพียงค่าเดียวเท่านั้น**  

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม เช่น {(1, a), (2, b), (3, a), (4, c)}  จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง

กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟโดยใช้วิธีการหาจุดตัดของแกน x และ แกน y

Let Me Introduce Myself: พูดเกี่ยวกับตัวเองแบบง่าย

พี่เชื่อว่าพอเปิดเทอมทีไรสิ่งที่เราต้องทำนั่นก็คือ การแนะนำตัวเอง ไม่ว่าจะเป็นทั้งในวิชาภาษาอังกฤษ หรือวิชาอื่นๆ นอกจากการแนะนำตัวเองแล้ว น้องๆ อาจจะต้องพูดบรรยายเกี่ยวกับตัวเองอีกด้วย วันนี้เราจะมาดูกันว่าเราจะสามารถพูดและบรรยายเกี่ยวกับตนเองให้น่าสนใจได้อย่างไรบ้าง

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้