ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C

เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof 

ฟังก์ชันประกอบ

จากรูป จะเห็นว่า สมาชิกในเซต B นั้น เป็นทั้งเรนจ์ของ f และเป็นโดเมนของ g

ดังนั้น การที่จะหา gof ได้  y ต้องอยู่ในเรนจ์ของฟังก์ชัน f และ โดเมนของฟังก์ชัน g พร้อมๆกัน นั่นคือ \mathrm{R_f \cap D_g \neq \O}

และจากรูปจะเห็นว่า

f เป็นความสัมพันธ์จาก A ไป B

g เป็นความสัมพันธ์จาก B ไป C

gof เป็นความสัมพันธ์จาก A ไป C

 

บทนิยาม

ให้ f และ g เป็นฟังก์ชัน และ ฟังก์ชันประกอบ แล้วฟังก์ชันประกอบของ f และ g คือ gof โดยที่ gof(x) = g(f(x))

และ \mathrm{D_{gof}} = {x ∈ \mathrm{D_f} : f(x) ∈ \mathrm{D_g}}

 

เช่น

ให้ f = {(1, 2), (2, 4), (3, 3), (4, 5)} และ g = {(1, 3), (2, 5), (3, 2), (4, 4)} จงหา gof

ขั้นแรก คือเราต้องตรวจสอบก่อนว่า ฟังก์ชันประกอบ

\mathrm{R_f} = {2, 3, 4, 5} และ \mathrm{D_g} = {1, 2, 3, 4} ดังนั้น \mathrm{R_f\cap D_g} = {2, 3, 4} นั่นคือ ฟังก์ชันประกอบ

ดังนั้น หา gof ได้

ฟังก์ชันประกอบ

ตัวอย่างการหาฟังก์ชันประกอบ

ให้ f(x) = 2x – 3 และ g(x) = x² + 5

จงหา gof, fog, gof(2), fog(3)

พิจารณา \mathrm{D_f} = \mathbb{R} จะได้ว่า \mathrm{R_f} = \mathbb{R}  และพิจารณา  \mathrm{D_g} = \mathbb{R} จะได้ \mathrm{R_g}=\mathbb{R}

จาก  \mathrm{R_f} = \mathbb{R}  และ  \mathrm{D_g} = \mathbb{R}  จะได้ว่า ฟังก์ชันประกอบ นั่นคือ หา gof ได้

จาก \mathrm{R_g}=\mathbb{R} และ \mathrm{D_f} = \mathbb{R} จะได้ว่า ฟังก์ชันประกอบ  นั่นคือ หา fog ได้

 gof

ฟังก์ชันประกอบ fog

ฟังก์ชันประกอบ

gof(2)

ฟังก์ชันประกอบ

fog(3)

ฟังก์ชันประกอบ

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ภาษาถิ่นใต้

ภาษาถิ่นใต้ มรดกทางวัฒณธรรมที่ควรค่าแก่การศึกษา

ภาษาเป็นส่วนหนึ่งของวัฒนธรรม โดยสิ่งที่สะท้อนให้เห็นถึงวัฒนธรรมผ่านภาษามากที่สุด ก็คือ การมีอยู่ของภาษาถิ่น ซึ่งเป็นภาษาที่ใช้พูดติดต่อสื่อสารตามท้องถิ่นต่าง ๆ เพื่อให้คนในพื้นที่เข้าใจกัน ประเทศไทยมีทั้งหมด 6 ภาค ภาษาถิ่นที่เด่นชัดที่สุดจะแบ่งออกเป็นภาษาถิ่นภาคกลางซึ่งครอบคลุมไปถึงภาคตะวันตะวันตก อาจมีแตกต่างบ้างในเรื่องของคำศัพท์บางคำและสำเนียง ภาษาถิ่นเหนือและภาษาถิ่นอีสาน ที่ได้รับอิทธิพลจากประเทศเพื่อนบ้าน และด้วยภูมิภาคที่อยู่ใกล้กันทำให้บางคำก็ใช้ด้วยกัน และสุดท้าย ภาษาถิ่นใต้ ที่ค่อนข้างจะแตกต่างกับภาษาถิ่นอื่น ๆ แต่จะมีลักษณะ และมีคำศัพท์น่ารู้อะไรบ้างนั้น เราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ภาษาถิ่นใต้  

ประโยคในภาษาไทย

ทริคสังเกต ประโยคในภาษาไทย รู้ไว้ไม่สับสน

  น้อง ๆ หลายคนคงจะเคยสับสนและมีข้อสงสัยเกี่ยวกับประโยคในภาษาไทยกันมาไม่มากก็น้อย ทำไมอยู่ดี ๆ เราถึงไม่เข้าใจประโยคภาษาไทยที่พูดกันอยู่ทุกวันไปได้นะ? แต่ไม่ต้องกังวลไปนะคะ บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ กลับไปทบทวนเกี่ยวกับเรื่องประโยคอีกครั้ง พร้อมเรียนรู้เคล็ดลับการสังเกตประโยคง่าย ๆ จะเป็นอย่างไร ไปดูพร้อมกันเลยค่ะ   ความหมายของประโยค   ประโยค เป็นหน่วยทางภาษาที่เกิดจากการนำคำหลาย ๆ คำ หรือกลุ่มคำ มาเรียงต่อกันอย่างเป็นระบบ มีความสัมพันธ์กัน

วิเคราะห์ สังเคราะห์ ประเมินค่า 3 วิธีที่จะช่วยพัฒนาความคิดให้เป็นระบบ

การคิด คือ กระบวนการทำงานของสมองที่ตอบสนองต่อสิ่งแวดล้อม โดยอาศัยประสบการณ์ความรู้และสภาพแวดล้อมมาพัฒนาการคิดและแสดงออกมาอย่างมีระบบ บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเจาะลึกถึงวิธีการคิดทั้ง 3 แบบคือ วิเคราะห์ สังเคราะห์ และ ประเมินค่า ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   การพัฒนาและแสดงความคิด   มนุษย์สามารถแสดงความคิดออกมาได้โดยการใช้ภาษา ซึ่งการใช้ภาษานั้นก็คือวิธีการถ่ายทอดความคิดที่อยู่ในหัวของเราออกมาให้คนอื่นเข้าใจและรู้ว่าเรามีความคิดต่อสิ่งนั้น ๆ อย่างไรบ้างไม่ว่าจะเป็นการพูดหรือการเขียน ดังนั้นการพัฒนาความคิดจึงเป็นสิ่งสำคัญ โดยวิธีการคิดสามารถแบ่งได้เป็น 3 ประเภทดังนี้

เรนจ์ของความสัมพันธ์

เรนจ์ของความสัมพันธ์ เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย   กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหลัง เช่น = {(2, 2), (3, 5), (8, 10)} จะได้ว่า  = {2, 5,

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1