ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C

เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof 

ฟังก์ชันประกอบ

จากรูป จะเห็นว่า สมาชิกในเซต B นั้น เป็นทั้งเรนจ์ของ f และเป็นโดเมนของ g

ดังนั้น การที่จะหา gof ได้  y ต้องอยู่ในเรนจ์ของฟังก์ชัน f และ โดเมนของฟังก์ชัน g พร้อมๆกัน นั่นคือ \mathrm{R_f \cap D_g \neq \O}

และจากรูปจะเห็นว่า

f เป็นความสัมพันธ์จาก A ไป B

g เป็นความสัมพันธ์จาก B ไป C

gof เป็นความสัมพันธ์จาก A ไป C

 

บทนิยาม

ให้ f และ g เป็นฟังก์ชัน และ ฟังก์ชันประกอบ แล้วฟังก์ชันประกอบของ f และ g คือ gof โดยที่ gof(x) = g(f(x))

และ \mathrm{D_{gof}} = {x ∈ \mathrm{D_f} : f(x) ∈ \mathrm{D_g}}

 

เช่น

ให้ f = {(1, 2), (2, 4), (3, 3), (4, 5)} และ g = {(1, 3), (2, 5), (3, 2), (4, 4)} จงหา gof

ขั้นแรก คือเราต้องตรวจสอบก่อนว่า ฟังก์ชันประกอบ

\mathrm{R_f} = {2, 3, 4, 5} และ \mathrm{D_g} = {1, 2, 3, 4} ดังนั้น \mathrm{R_f\cap D_g} = {2, 3, 4} นั่นคือ ฟังก์ชันประกอบ

ดังนั้น หา gof ได้

ฟังก์ชันประกอบ

ตัวอย่างการหาฟังก์ชันประกอบ

ให้ f(x) = 2x – 3 และ g(x) = x² + 5

จงหา gof, fog, gof(2), fog(3)

พิจารณา \mathrm{D_f} = \mathbb{R} จะได้ว่า \mathrm{R_f} = \mathbb{R}  และพิจารณา  \mathrm{D_g} = \mathbb{R} จะได้ \mathrm{R_g}=\mathbb{R}

จาก  \mathrm{R_f} = \mathbb{R}  และ  \mathrm{D_g} = \mathbb{R}  จะได้ว่า ฟังก์ชันประกอบ นั่นคือ หา gof ได้

จาก \mathrm{R_g}=\mathbb{R} และ \mathrm{D_f} = \mathbb{R} จะได้ว่า ฟังก์ชันประกอบ  นั่นคือ หา fog ได้

 gof

ฟังก์ชันประกอบ fog

ฟังก์ชันประกอบ

gof(2)

ฟังก์ชันประกอบ

fog(3)

ฟังก์ชันประกอบ

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ความน่าจะเป็น

ความน่าจะเป็น

บทความนี้จะแนะนำให้รู้จักกับ ความน่าจะเป็น ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ รวมถึงคำที่เกี่ยวข้องกับความน่าจะเป็น เช่นการทดลองสุ่ม ปริภูมิตัวอย่าง และเหตุการณ์ ดังต่อไปนี้ ความน่าจะเป็น ความน่าจะเป็น (Probability)  เป็นจำนวนที่ใช้เพื่อบอกโอกาสที่เหตุการณ์หนึ่ง ๆ จะเกิดขึ้น ซึ่งมี 3 ลักษณะ คือ ไม่เกิดขึ้นอย่างแน่นอนจะมีค่าความน่าจะเป็นเท่ากับ 0 อาจจะเกิดขึ้นหรือไม่ก็ได้ จะมีค่าความน่าจะเป็นอยู่ระหว่าง 0 กับ 1

E6 This, That, These, Those

This, That, These, Those

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคนวันนี้เราจะไปเรียนเรื่อง This, That, These, Those กันค่ะ พร้อมแล้วก็ไปลุยกันเลยจ้า   เข้าสู่บทเรียน   ก่อนที่นักเรียนจะไปเรียนเรื่อง การใช้  This, That, These, Those ครูอยากจะให้ลองดูตัวอย่างของการใช้ This, That, These, Those (Determiners) และ This,

สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล)

บทความนี้ได้รวบรวมความรู้เรื่อง ค่ากลางของข้อมูลและการกระจายของข้อมูล ซึ่งค่ากลางของข้อมูลจะประกอบด้วย ค่าเฉลี่ยเลขคณิต มัธยฐาน และฐานนิยม ส่วนการวัดการกระจายของข้อมูลจะศึกษาในเรื่องการหาส่วนเบี่ยงเบนมาตรฐาน ซึ่งน้องๆสามารถทบทวน การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ได้ที่  ⇒⇒  การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ⇐⇐ หมายเหตุ ค่าเฉลี่ยในทางคณิตศาสตร์มีหลายชนิด แต่ที่นิยมใช้คือค่าเฉลี่ยเลขคณิต การวัดค่ากลางของข้อมูล  เป็นการหาค่ากลางมาเป็นตัวแทนของข้อมูลแต่ละชุด ซึ่งมีวิธีการหาได้หลายวิธีที่นิยมกัน ได้แก่ ค่าเฉลี่ยเลขคณิต มัธยฐาน ฐานนิยม ค่าเฉลี่ยเลขคณิต (Arithmetic

Passive Voice ในปัจจุบัน

Passive Voice ในรูปปัจจุบัน

สวัสดีค่ะนักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดูการใช้ Passive Voice ในรูปปัจจุบัน กัน ถ้าพร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมาย   Passive Voice (แพ็ซซิฝ ว็อยซ) หมายถึงประโยคที่เน้นกรรม โดยการนำโครงสร้างผู้ถูกกระทำขึ้นต้นประโยค และหากว่าต้องการเน้นผู้กระทำให้เติม  “by + ผู้กระทำ” ท้ายประโยค แต่ว่าเราสามารถละ by ไว้ได้น๊า ในบทนี้เราจะไปดูรูปประโยคในปัจจุบันกันจร้า

M6 Phrasal Verbs

Phrasal Verbs 

สวัสดีค่ะนักเรียนชั้นม.6 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “Phrasal Verbs“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด   ความหมาย Phrasal Verbs  Phrasal Verbs คือ คำกริยา โดยเป็นกริยาที่มีคำอื่นๆ อย่างเช่น คำบุพบท (Preposition) ร่วมกันส่วนใหญ่แล้ว Phrasal Verbs จะบอกถึงการกระทำ มักจะเจอในชีวิตประจำวันในสถานการณ์ทั่วไป ไม่เป็นทางการมาก ข้อดีคือจะทำให้ภาษาใกล้เคียงกับเจ้าของภาษามากขึ้นนั่นเองจ้า

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1