รูปแบบของประพจน์ที่สมมูลกัน

การสมมูลกันของประพจน์สำคัญอย่างไร?? ถือว่าสำคัญค่ะ เพราะถ้าเรารู้ว่าประพจน์ไหนสมมูลกับประพจน์อาจจะทำให้การตรวจสอบการเป็นสัจนิรันดร์และการหาค่าความจริงง่ายขึ้น หลังจากอ่านบทความนี้จบ น้องๆจะสามารถทำแบบฝึกหัดเรื่องการสมมูลได้และพร้อมทำข้อสอบได้แน่นอน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ประพจน์ที่สมมูล

ประพจน์ที่สมมูลกัน คือ ประพจน์ที่มีค่าความจริงเหมือนกันทุกกรณี เขียนแทนด้วยสัญลักษณ์ “≡”

แล้วค่าความจริงเหมือนกันทุกกรณี คือยังไง?? เรามาลองพิจารณาค่าความจริงของประพจน์ p→q และ ∼q→∼p จากตารางค่าความจริงกันค่ะ

จากตาราง จะเห็นว่า p→q และ ∼q→∼p มีค่าความจริงเหมือนกันทุกกรณี ดังนั้นเราจะได้ว่า p→q และ ∼q→∼p เป็นประพจน์ที่สมมูลกัน เขียนแทนด้วย p→q ≡ ∼q→∼p

หลังจากที่เรารู้แล้วว่าประพจน์ที่สมมูลกันคืออะไร ต่อไปเรามาดูตัวอย่างของประพจน์ที่สมมูลกันค่ะ (ควรจำให้ได้ แล้วจะเป็นประโยชน์มากๆ)

1.) p∧p≡ p

2.) p∨p≡p

3.) (p∨q)∨r ≡ p∨(q∨r) (เปลี่ยนกลุ่ม)

4.) (p∧q)∧r ≡ p∧(q∧r) (เปลี่ยนกลุ่ม)

5.) p∨q ≡ q∨p (สลับที่)

6.) p∧q ≡ p∧q (สลับที่)

7.) p∨(q∧r) ≡ (p∨q)∧(p∨r) (แจกแจง)

8.) p∧(q∨r) ≡ (p∧q)∨(p∧r) (แจกแจง)

9.) ∼(p∨q) ≡ ∼p∧∼q

10.) ∼(p∧q) ≡ ∼p∨∼q

11.) ∼p→q ≡ p∨∼q **

12.) p→q ≡ ∼p∨q **

13.) p→q ≡ ∼q→∼p

14.) p↔q ≡ (p→q)∧(p→q) ≡ (∼p∨q)∧(∼p∨q)

** เปลี่ยน “ถ้า…แล้ว…” เป็น “หรือ” ง่ายๆ ด้วยประโยค “หน้าเปลี่ยนไป “หรือ” หลังเฉยๆ วิธีนี้ใช้ได้ทั้งไปและกลับ

เช่น

p→q จะเปลี่ยนเป็น “หรือ” : หน้าเปลี่ยนไป คือ ประพจน์ข้างหน้าเปลี่ยนเป็นนิเสธ จะได้ ∼p “หรือ” หลังเฉยๆ คือ ข้างหลังเป็น q เหมือนเดิม ดังนั้น จะได้ ∼p∨q

p∨q จะเปลี่ยนเป็น “ถ้า…แล้ว…” : หน้าเปลี่ยนไป คือ ประพจน์ p เปลี่ยนเป็น นิเสธของ p จะได้ ∼p “แล้ว” หลังเฉยๆ คือ ข้างหลังเป็น q เหมือนเดิม ดังนั้น จะได้ ∼p→q

เราสามารถตรวจสอบว่าประพจน์สมมูลกันหรือไม่ด้วยการสร้างตารางค่าความจริง หรืออาจจะใช้ตัวอย่างการสมมูลข้างต้นมาช่วยตรวจสอบก็ได้(ใช้สูตร)

**การใช้สูตร เราจะทำให้ตัวเชื่อมเหมือนกันและตำแหน่งเดียวกัน เพื่อจะได้สรุปได้ว่าประพจน์ทั้งสองสมมูลกันหรือไม่

เช่น จงพิจารณาว่า ประพจน์ที่ให้มาสมมูลกันหรือไม่ p→∼q กับ q→∼p

วิธีที่ 1 สร้างตารางค่าความจริงได้ ดังนี้

จากตารางค่าความจริง จะเห็นว่า ค่าความจริงของ p→∼q กับ q→∼p มีค่าความจริงเหมือนกันทุกกรณี ดังนั้น p→∼q กับ q→∼p สมมูลกัน

วิธีที่2 ใช้สูตร เราจะสลับ q ให้มาอยู่ข้างหน้า แต่ “→” ไม่สามารถสลับที่ได้ต้องเปลี่ยนให้เป็นตัวเชื่อมที่สลับที่ได้แล้วค่อยเปลี่ยนกลับมาเป็น “→”

ดังนั้น จะได้ว่า p→∼q กับ q→∼p สมมูลกัน

ลองมาดูอีก 1 ตัวอย่างค่ะ

จงพิจารณาว่า ประพจน์ที่ให้มาสมมูลกันหรือไม่ ∼p∨∼q กับ ∼p→q

วิธีที่ 1 สร้างตารางค่าความจริง

จากตารางจะเห็นว่า ค่าความจริงของ ∼p∨∼q กับ ∼p→q ต่างกันบางกรณี ดังนั้น ∼p∨∼q กับ ∼p→q ไม่สมมูลกัน

วิธีที่ 2 ใช้สูตร เราจะทำให้ ∼p∨∼q อยู่ในรูป “ถ้า…แล้ว…”

ดังนั้น ∼p∨∼q กับ ∼p→q ไม่สมมูลกัน

 

น้องๆลองสังเกตดู จะเห็นว่าการใช้ตารางนั้นยุ่งยากและค่อนข้างเสียเวลา

ดังนั้น น้องๆควรหมั่นฝึกฝนทำแบบฝึกหัดการตรวจสอบการสมมูลโดยวิธีใช้สูตร เพื่อจะได้ทำอย่างคล่องแคล่ว แม่นยำ และรวดเร็ว

 

ตัวอย่าง

เนื่องจากการตรวจสอบโดยใช้ตารางค่าความจริงเป็นวิธีที่ไม่ได้มีอะไรยาก ตัวอย่างต่อไปนี้เราจึงจะใช้วิธีใช้สูตร เพื่อให้น้องๆเข้าใจมากยิ่งขึ้นค่ะ

จงตรวจสอบว่าประพจน์ต่อไปนี้สมมูลกันหรือไม่

1.) ∼(p↔q) กับ ∼p↔∼q

วิธีทำ

ดังนั้น ∼(p↔q) กับ ∼p↔∼q ไม่สมมูลกัน

2.) p→(q→r) กับ (p∧q)→r

วิธีทำ

ดังนั้น p→(q→r) กับ (p∧q)→r สมมูลกัน

3.) ∼[(p∧q)→(∼q∨r)] กับ p∧∼(q→r)

วิธีทำ

ดังนั้น ∼[(p∧q)→(∼q∨r)] กับ p∧∼(q→r) สมมูลกัน

 

ไม่มีใครเข้าใจตั้งแต่ครั้งแรกที่เรียน ถ้าน้องเปิดใจให้วิชาคณิตศาสตร์และขยันทำโจทย์ คณิตศาสตร์ก็เป็นอีกหนึ่งวิชาที่สนุก สู้ๆนะคะ❤️❤️

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม.4Gerund

Gerund

  สวัสดีค่ะนักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” และฝึกวิเคราะห์โจทย์ข้อสอบเข้ามหาวิทยาลัยกันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund   อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม

พันธกิจของภาษา

พันธกิจของภาษา ความสำคัญและอิทธิพลของภาษาที่มีต่อมนุษย์

ภาษาที่มนุษย์ใช้กันอยู่ทุกวันนี้ไม่เพียงแต่เป็นเครื่องมือสื่อสาร แต่ยังเป็นเครื่องมือสื่อความหมาย ความต้องการ และความคิดของคน บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่อง พันธกิจของภาษา พร้อมความสำคัญและอิทธิพลของภาษาที่มีต่อมนุษย์ จะเป็นอย่างไรบ้างนั้นเราไปดูพร้อม ๆ กันเลยค่ะ   พันธกิจของภาษา   พันธกิจของภาษาคืออะไร?   พันธกิจของภาษา หมายถึง ประโยชน์หรือความสำคัญของภาษา ซึ่งประกอบไปด้วยความสำคัญหลัก ๆ ดังนี้ 1. ภาษาช่วยธำรงสังคม

สมบัติของการเท่ากัน

สมบัติของการเท่ากัน

          การหาคำตอบของสมการนั้น ต้องใช้สมบัติการเท่ากันมาช่วยในการหาคำตอบ จะรวดเร็วกว่าการแทนค่าตัวแปรในสมการซึ่งสมบัติการเท่ากันที่ใช้ในการแก้สมการได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ เรามาทำความรู้จักสมบัติเหล่านี้กันค่ะ สมบัติสมมาตร ถ้า a = b แล้ว b = a เมื่อ a และ

วงรี

วงรี

วงรี วงรี จะประกอบไปด้วย 1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า 2) จุดยอด 3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก 4) ความเยื้องศูนย์กลาง (eccentricity) วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด จากกราฟ สมการรูปแบบมาตรฐาน:    จุดยอด : (a, 0) และ (-a,

สมการเอกซ์โพเนนเชียล

สมการเอกซ์โพเนนเชียล

สมการเอกซ์โพเนนเชียล สมการเอกซ์โพเนนเชียล เป็นสมการที่จะมีเลขชี้กำลังเป็นตัวแปร เช่น ,   จากบทความที่ผ่านมาเราได้พูดถึงฟังก์ชันเอกซ์โพเนนเชียลไปแล้ว ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับการแก้สมการเอกซ์โพเนนเชียลซึ่งมีหลายวิธี  ซึ่งเรื่องสมการเอกซ์โพเนนเชียลนี้มักจะออกสอบบ่อยเรียกได้ว่าทุกปีเลย ดังนั้นวันนี้เราเลยยจะมาสอนน้องๆแก้สมการ และให้เทคนิคการแก้สมการเอกซ์โพเนนเชียล สำหรับใครที่ยังไม่ได้ทำความรู้จักกับฟังก์ชันเอกซ์โพเนนเชียลสามารถเข้าไปดูตามลิงค์นี้เลยค่ะ !!!ฟังก์ชันเอกซ์โพเนนเชียล!!! การแก้สมการเอกซ์โพเนนเชียล วิธีที่ 1 : ทำฐานให้เหมือนกัน เมื่อฐานเท่ากันแล้ว เราก็จะได้ว่าเลขชี้กำลังก็จะเท่ากันด้วย ตัวอย่าง    วิธีที่ 2 : ทำเลขชี้กำลังให้เหมือนกัน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1