พื้นที่ผิวทรงกรวยและลูกบาศก์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

พื้นที่ผิวทรงกรวยและลูกบาศก์

การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ

รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ

พื้นที่ผิวทรงกรวย

ทรงกรวย คือ รูปทรงเรขาคณิต 3 มิติ ที่มีลักษณะปลายด้านหนึ่งเป็นทรงเเหลม เเละปลายอีกด้านเป็นลักษณะวงกลม โดยภาพคลี่ของทรงกรวยจะมีลักษณะเป็นรูปเรขาสองมิติที่ประกอบด้วย รูปสามเหลี่ยมฐานโค้ง เเละ วงกลม

โดยการหาพื้นที่ผิวของทรงกรวยทำได้ดังนี้

 

พื้นที่ผิวทรงกรวย = \large \pi r^{2} + \pi rl

เมื่อ r คือ ความยาวรัศมีของวงกลมที่เป็นฐาน
.      h คือ ความสูงของทรงกรวย หรือ เราเรียกว่า “สูงตรง”
.      l  คือ ความสูงเอียงของทรงกรวย หรือ เราเรียกว่า “สูงเอียง”

 

 


จากสูตรจะเห็นได้ว่าพื้นที่ผิวของทรงกรวยประกอบด้วยสองส่วนคือ ส่วนที่เป็นพื้นที่ผิวของวงกลมที่เป็นฐาน = \pi r^{2} เเละพื้นที่ผิวของสามเหลี่ยมฐานโค้ง = \pi rl  รวมกันทั้งสองส่วนจะได้พื้นที่ผิวทั้งหมดของทรงกรวย


ตัวอย่างโจทย์พื้นที่ผิวทรงกรวย

ตัวอย่างที่ 1 จงหาพื้นที่ผิวของทรงกรวยมีความสูงตรง 16 นิ้ว, ความสูงเอียง 22 นิ้ว, เเละมีเส้นผ่านศูนย์กลาง 14 นิ้ว (โดยให้ π = 22/7)

วิธีทำ จากโจทย์วาดรูปได้ดังนี้

เส้นผ่านศูนย์กลางของทรงกรวยมีความยาว 14 นิ้ว ครึ่งหนึ่งของเส้นผ่านศูนย์กลางคือ รัศมี เเสดงว่ารัศมีความยาว 7 นิ้ว ดังนั้น

พื้นที่ผิวทรงกรวย = \dpi{120} \pi r^{2} + \pi rl

.                            = \dpi{120} \frac{22}{7} \cdot 7^{2} + \frac{22}{7}\cdot 7\cdot 22
.                            = \dpi{120} 22\cdot 7+ 22\cdot 22
.                            = \dpi{120} 154 + 484
.                            = \dpi{120} 638  ตารางนิ้ว

ตอบ พื้นที่ผิวของทรงกรวยมีขนาด 638 ตารางนิ้ว

ตัวอย่างที่ 2 จงหาพื้นที่ผิวของกรวยจราจรที่มีลักษณะทรงกรวยด้านล่างไม่มีส่วนปิดมีความสูงตรง 16 เซนติเมตรเเละมีความสูงเอียง 20 เซนติเมตร (โดยให้ π = 3.14)

วิธีทำ จากโจทย์วาดรูปได้ดังนี้

โจทย์บอกว่ากรวยจราจรด้านล่างไม่มีส่วนปิดดังนั้น เราจึงไม่ต้องหาพื้นที่ของวงกลมที่เป็นฐานของทรงกรวยจะได้ว่า
พื้นที่ผิวของกรวยจราจร = \pi rl

จากสูตรจะเห็นได้ว่า ต้องใช้รัศมีของวงกลมเเต่โจทย์ไม่ได้ให้รัศมีมา ซึ่งเราสามารถหารัศมีของวงกลมได้ด้วย ทฤษฎีบทพีทาโกรัส 
.                                            c^{2} = a^{2} + b^{2}
โดยให้ความสูงเอียงเป็นด้านตรงข้ามมุมฉาก = c เเละให้ความสูงตรงเป็น a เเละให้รัศมีเป็น b จะได้ว่า
.                                            20^{2} = 16^{2} + b^{2}
.                                            400 = 256 + b^{2}
.                               400 - 256 = b^{2}
.                                            144 = b^{2}
.                                                 b = \sqrt{144} = 12
รัศมีของวงกลมมีความยาว 12 เซนติเมตร ดังนั้น
พื้นที่ผิวของกรวยจราจร = \pi rl
.                                       = 3.14 \cdot 12\cdot 20
.                                       = 753.6 ตารางเซนติเมตร

ตอบ พื้นที่ผิวของกรวยจราจรมีขนาด 753.6 ตารางเซนติเมตร


พื้นที่ผิวทรงลูกบาศก์

ลูกบาศก์ คือ รูปทรงสามมิติที่ประกอบด้วยรูปเรขาคณิตสองมิติที่เป็น สี่เหลี่ยมจตุรัสทั้ง 6 ด้านเเละเเต่ละด้านมีขนาดเเละความยาวเท่ากันทั้งหมด

โดยการหาพื้นที่ของทรงลูกบาศก์สามารถทำได้ดังนี้

 

พื้นที่ผิวทรงลูกบาศก์ = 6\cdot d^{2}
เมื่อ d = ความยาวด้านของทรงลูกบาศก์

 

 

 

จากสูตรจะเห็นได้ว่าเป็นการหาพื้นที่สี่เหลี่ยมจตุรัส = ด้าน x ด้าน เเล้วคูณด้วย 6 เป็นเพราะว่ามีสี่เหลี่ยมจตุรัส 6 ชิ้นประกอบกันทำให้เราได้พื้นที่ผิวทั้งหมดของทรงลูกบาศก์


ตัวอย่างโจทย์พื้นที่ผิวทรงลูกบาศก์

ตัวอย่างที่ 3 จงหาพื้นที่ผิวของทรงลูกบาศก์โดยลูกบาศก์มีความยาวด้าน 10 เซนติเมตร

วิธีทำ จากโจทย์จะวาดรูปได้ดังนี้

ดังนั้นพื้นที่ผิวของทรงลูกบาศก์ = 6\cdot d^{2}
.                                                   = 6\cdot 10^{2}
.                                                   = 6\cdot 100
.                                                   = 600 ตารางเซนติเมตร

 

ตอบ พื้นที่ผิวของทรงลูกบาศก์นี้มีขนาด 600 ตารางเซนติเมตร

ตัวอย่างที่ 4 จงหาพื้นที่ผิวรอบนอกเเละพื้นที่ผิวทั้งหมดของทรงลูกบาศก์ต่อไปนี้

วิธีทำ จากโจทย์จะเห็นได้ว่าทรงสี่เหลี่ยมลูกบาศก์นี้มีช่องสี่เหลี่ยมที่มีความยาวด้าน 5 นิ้วให้เรามองสี่เหลี่ยมนี้เป็นปริซึมสี่เหลี่ยมที่มีความยาวด้าน 5 นิ้ว ยาว 10 นิ้ว เเละโจทย์บอกว่าให้เราหาพื้นที่ผิวรอบนอกของทรงลูกบาศก์ (พื้นที่เเรเงาสีเทา) เเสดงว่าพื้นที่ด้านในของปริซึมสี่เหลี่ยมไม่นำมาคิด 


ดังนั้นพื้นที่ผิวของรอบนอกของทรงลูกบาศก์ = พื้นที่ผิวของทรงลูกบาศก์ – (พื้นที่ของสี่เหลี่ยม x 2)
.                                                                        = (6\cdot d^{^{2}}) - (2\cdot a^{^{2}})          (โดยให้ความยาวด้านของสี่เหลี่ยม = a)
.                                                                        = (6\cdot 10^{2}) - (2\cdot 5^{2})
.                                                                        = (6\cdot 100) - (2\cdot 25)
.                                                                        = 600 - 50
.                                                                        = 550 ตารางนิ้ว

เเละพื้นที่ผิวทั้งหมดของทรงลูกบาศก์คือผลรวมของพื้นที่ผิวรอบนอกของทรงลูกบาศก์ (พื้นที่เเรเงาสีเทา) กับพื้นที่ผิวด้านข้างของปริซึมสี่เหลี่ยม (พื้นที่เเรเงาสีเเดง)

   

ดังนั้นพื้นที่ผิวทั้งหมดของทรงลูกบาศก์ = พื้นที่ผิวรอบนอกของทรงลูกบาศก์+พื้นที่ผิวด้านข้างของปริซึมสี่เหลี่ยม
.                                                                = 550 + (4\cdot d\cdot a)
.                                                                = 550 + (4\cdot 10\cdot 5)
.                                                                = 550 + (200)
.                                                                = 750 ตารางนิ้ว

ตอบ พื้นที่ผิวรอบนอกของทรงลูกบาศก์มีขนาด 550 ตารางนิ้ว เเละพื้นที่ผิวทั้งหมดของทรงลูกบาศก์มีขนาด 750 ตารางนิ้ว

ตัวอย่างที่ 5 จงหาพื้นที่ผิวของทรงลูกบาศก์ต่อไปนี้

วิธีทำ จากโจทย์จะเห็นได้ว่าเส้นทะเเยงมุมของพื้นที่สี่เหลี่ยมมีความยาว 12 หน่วย เราสามารถหาความยาวด้านของทรงลูกบาศก์ได้ด้วย ทฤษฎีบทพีทาโกรัส 

c^{2} = a^{2} + b^{2}
12^{2} = a^{2} + b^{2}  โดยด้าน a เเละ b เป็นความยาวด้านของทรงลูกบาศก์ซึ่งมีขนาดเท่ากัน มีค่า = d
144 = d^{2} + d^{2}
144 = 2d^{2}

\frac{144}{2} = d^{2}
72 = d^{2}
d = \sqrt{72} หน่วย

ดังนั้น พื้นที่ผิวของทรงลูกบาศก์ = 6\cdot d^{2}
.                                                    = 6\cdot (\sqrt{72})^{2}     
.                                                    = 6\cdot 72
.                                                    = 432    ตารางหน่วย

ตอบ พื้นที่ผิวของทรงลูกบาศก์นี้มีขนาด 432 ตารางหน่วย

หากน้อง ๆ สามารถคำนวณพื้นที่ผิวของทรงกรวยเเละลูกบาศก์ได้เเล้ว น้อง ๆ สามารถนำไปประยุกต์ใช้ในชีวิตประจำวันได้หลากหลายในอนาคต น้องสามารถศึกษาการหา พื้นที่ผิวทรงกรวยเเละลูกบาศก์ เพิ่มเติมได้ในคลิปวิดีโอด้านล่าง


คลิปวิดีโอ พื้นที่ผิวทรงกรวยเเละลูกบาศก์

คลิปวิดีโอนี้ได้รวบรวมวิธีหา พื้นที่ผิวทรงกรวยเเละลูกบาศก์ ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยความรู้ เเละเทคนิครวมถึงการอธิบาย ตัวอย่าง เเละสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Profile of Signal Words

การใช้ Signal Words ในภาษาอังกฤษ

  บทนำ   สวัสดีค่ะนักเรียน ม.1 ทุกคน วันนี้ครูมีเทคนิคที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วยการใช้ คำลำดับความสำคัญ (Signal Words) ในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay คือเรียงความเพราะฉะนั้นจะยาวกว่า Paragraph ที่เป็นเพียงย่อหน้าหนึ่งเท่านั้นนั่นเองค่ะ

M2 V. to be + ร่วมกับ Who WhatWhere + -Like + infinitive

การใช้ V. to be ร่วมกับ Who/ What/Where และ Like +V. infinitive

สวัสดีค่ะนักเรียนชั้นม.2 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ V. to be + ร่วมกับ Who/ What/Where + -Like + infinitive ซึ่งเป็นโครงสร้างที่สับสนบ่อย แต่ที่จริงแล้วง่ายมากๆ ไปลุยกันเลยจ้า Let’s go ความหมาย    Verb to be

M3 Past Passive

Past Passive คืออะไร

Hi guys! สวัสดีค่ะนักเรียนชั้นม.3 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   Past Passive คืออะไร   Past หมายถึง อดีต ส่วน Passive มาจากโครงสร้างของ Passive voice (ประโยคที่ประธานถูกกระทำ เน้นกรรม) เมื่อนำมารวมกันแล้วPast

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ จัดรูปใหม่ ได้เป็น (อ่านว่าล็อก x ฐาน

ศึกษาตัวบทและข้อคิดที่แฝงอยู่ในสามัคคีเภทคำฉันท์

สามัคคีคือพลัง เป็นคำกล่าวคุ้นหูที่หลายคนคงจะเคยได้ยินคนพูดให้ฟังอยู่บ่อย ๆ เพราะไม่ว่าเราจะทำสิ่งใดร่วมกับใคร เพื่อให้งานนั้นสำเร็จและเป็นไปอย่างราบรื่น เราก็ต้องอาศัยความสามัคคีของคนในกลุ่มช่วยกันขับเคลื่อนให้ทุกอย่างเดินไปข้างหน้าได้ แต่บางครั้งคนเราก็อาจปล่อยให้อารมณ์มาบดบังจนทำให้แตกความสามัคคีกันอยู่บ่อย ๆ สามัคคีเภทคำฉันท์ เป็นวรรณคดีที่ว่าด้วยผลของการแตกความสามัคคี บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้ตัวบทเด่น ๆ ที่สำคัญ ถอดบทเรียนจากตัวละครและศึกษาคุณค่าที่แฝงอยู่ในเรื่องกันค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้วรรณคดีเรื่องนี้พร้อมกันเลย   ตัวบทเด่น ๆ ใน สามัคคีเภทคำฉันท์     ถอดความ

วิธีใช้คำราชาศัพท์ ใช้อย่างไรให้เหมาะสม

ราชาศัพท์ เป็นถ้อยคำที่ใช้พูดกับพระมหากษัตริย์และพระบรมวงศานุวงศ์ ข้าราชการชั้นผู้ใหญ่ พระภิกษุสงฆ์ รวมถึงคำสุภาพที่ใช้กับคนทั่วไป การใช้คำราชาศัพท์ เป็นเรื่องที่มีปัญหาอยู่มาก เพราะการใช้ที่ไม่ถูกต้อง บทเรียนที่เราจะได้เรียนรู้กันในวันนี้น้อง ๆ จะได้เรียนรู้เกี่ยวกับ วิธีใช้คำราชาศัพท์ สำหรับพระมหากษัตริย์และพระบรมวงศานุวงศ์ ทั้งคำนาม และคำสรรพนาม ว่าเราควรแทนตัวเองหรือพระองค์อย่างไรให้ถูกต้อง ถ้าอยากรู้แล้ว ไปดูพร้อมกันเลยค่ะ   ลักษณะการใช้คำราชาศัพท์   คำราชาศัพท์มีไว้ใช้สำหรับคนธรรมดาทั่วไปพูดกับผู้ที่มีศักดิ์สูงกว่าอย่าง กษัตริย์ พระราชินี และพระบรมวงศานุวงศ์

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1