ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย

ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ

หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ

 

ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์ เรียกว่า โคเซค  และฟังก์ชันที่เป็นส่วนกลับของโคไซน์ เรียกว่า เซค

เมื่อกำหนดให้ θ เป็นจำนวนจริง จะได้ว่า

cosecθ = \inline \frac{1}{sin\theta } โดยที่ sinθ ≠ 0

secθ = \inline \frac{1}{cos\theta } โดยที่ cosθ ≠ 0

หลักการจำคือ ให้จำแค่ secθ >>> จำว่า cos sec ( อ่านว่า คอสเซค) ซึ่งหมายถึงว่า secθ เป็นส่วนกลับของ cosθ นั่นเอง

ฟังก์ชันตรีโกณมิติอื่นๆ

ให้ θ เป็นจำนวนจริง

tanθ = \inline \frac{sin\theta }{cos\theta } เมื่อ cosθ ≠ 0

cotθ = \inline \frac{cos\theta }{sin\theta } เมื่อ sinθ ≠ 0 หรือจะบอกว่า cotθ = \inline \frac{1}{tan\theta } ก็ได้

โคฟังก์ชันของฟังก์ชันตรีโกณมิติ

โคฟังก์ชัน (Co-function) คือฟังก์ชันที่จับคู่กัน ได้แก่

sin เป็นโคฟังก์ชันของ cos

sec เป็นโคฟังก์ชันของ cosec

tan เป็นโคฟังก์ชันของ cot

  • ฟังก์ชันตรีโกณมิติที่เขียนอยู่ในรูป ( \frac{\pi }{2} – θ ) สามารถใช้หลักของโคฟังก์ชันได้ดังนี้

sin( \frac{\pi }{2} – θ ) = cosθ               cosec( \frac{\pi }{2} – θ ) = secθ

cos( \frac{\pi }{2} – θ ) = sinθ               sec( \frac{\pi }{2} – θ ) = cosecθ

tan( \frac{\pi }{2} – θ ) = cotθ               cot( \frac{\pi }{2} – θ ) = tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนอยู่ในรูป ( \frac{\pi }{2} + θ )

sin( \frac{\pi }{2} + θ ) = cosθ              cosec( \frac{\pi }{2} + θ ) = secθ

cos( \frac{\pi }{2} + θ ) = -sinθ            sec( \frac{\pi }{2} + θ ) = -cosecθ

tan( \frac{\pi }{2} + θ ) = -cotθ            cot( \frac{\pi }{2} + θ ) = -tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนในรูป ( \frac{3\pi }{2} – θ )

sin( \frac{3\pi }{2} – θ ) = -cosθ               cosec( \frac{3\pi }{2} – θ ) = -secθ

cos( \frac{3\pi }{2} – θ ) = -sinθ               sec( \frac{3\pi }{2} – θ ) = -cosecθ

tan( \frac{3\pi }{2} – θ ) = cotθ                cot( \frac{3\pi }{2} – θ ) = tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนในรูป ( \frac{3\pi }{2} + θ )

sin( \frac{3\pi }{2} + θ ) = -cosθ              cosec( \frac{3\pi }{2} + θ ) = -secθ

cos( \frac{3\pi }{2} + θ ) = sinθ               sec( \frac{3\pi }{2} + θ ) = cosecθ

tan( \frac{3\pi }{2} + θ ) = -cotθ             cot( \frac{3\pi }{2} + θ ) = -tanθ

น้องๆเห็นแล้วอาจจะคิดว่ามันเยอะแต่เราสามารถเลือกจำแค่บางตัวได้ตัวที่พี่อยากให้จำคือ sin และ cos

เช่น เราต้องการหา

tan( \frac{\pi }{2} + θ ) ซึ่งสามารถเขียนได้อีกแบบคือ \inline \frac{sin\left ( \frac{\pi }{2} +\theta \right )}{cos\left ( \frac{\pi }{2} +\theta \right )}

แยกหา sin( \frac{\pi }{2} + θ ) = cosθ และ cos( \frac{\pi }{2} + θ ) = -sinθ

ดังนั้นจะได้ \inline \frac{cos\theta }{-sin\theta } ซึ่งก็คือ -cotθ นั่นเอง

ตัวอย่างการหาค่าโคฟังก์ชัน

1) sec( -\frac{4\pi }{5} )

วิธีทำ  เรารู้ว่า โคฟังก์ชันของ sec คือ cosec

พิจารณา sec( -\frac{4\pi }{5} )  ตอนนี้เราได้ θ = -\frac{4\pi }{5}

จาก cosec( \frac{\pi }{2} – θ ) = secθ

ดังนั้น sec( -\frac{4\pi }{5} ) = cosec( \frac{\pi }{2}-  ( -\frac{4\pi }{5} )) = cosec( \frac{13\pi }{10} )

เราสามารถหาโคฟังก์ชันได้อีกวิธีหนึ่ง

นั่นก็คือเราจะพิจารณาว่า -\frac{4\pi }{5} มาจากอะไร????

พิจารณา \frac{\pi }{2}- \frac{13\pi }{10} = -\frac{4\pi }{5}

จะได้ว่า sec( -\frac{4\pi }{5} ) = sec( \frac{\pi }{2}- \frac{13\pi }{10} ) = cosec( \frac{13\pi }{10} )

การหาค่าฟังก์ชันตรีโกณมิติอื่นๆ

การหาค่าฟังก์ชันตรีโกนณ์เหล่านี้ไม่ยากเลย ยิ่งถ้าน้องๆมีพื้นฐานการหาค่าฟังก์ชันไซน์กับโคไซน์แล้วยิ่งง่ายมากๆเลย

เช่น ต้องการหา secθ เราก็แค่หา cosθ มาก่อน จากนั้นนำค่าที่ได้ไปเป็นตัวหารเราก็จะได้ค่า secθ มาแล้ว

ตัวอย่าง

1) หาค่า sec( \frac{4\pi }{3} ) + cosec( \frac{7\pi }{6} ) – 3cot( \frac{4\pi }{3} )

  • พิจารณา sec( \frac{4\pi }{3} ) จาก secθ = \inline \frac{1}{cos\theta } ดังนั้น เราจะมาหาค่าของ cos( \frac{4\pi }{3} )

จากกฎมือซ้าย จะได้ว่า cos( \frac{\pi }{3} ) = \frac{1}{2}

พิจารณา \frac{4\pi }{3} อยู่ควอดรันต์ที่ 3 ซึ่งค่า x = cosθ ต้องเป็นจำนวนลบ

ดังนั้น cos( \frac{4\pi }{3} ) = -\frac{1}{2} นั่นคือ sec( \frac{4\pi }{3} ) = -2

  • พิจารณา cosec( \frac{7\pi }{6} ) จาก cosec( \frac{7\pi }{6} ) = \inline \frac{1}{sin\left ( \frac{7\pi }{6} \right )}

ดังนั้นเราจะมาหาค่าของ sin( \frac{7\pi }{6} ) ซึ่ง \frac{7\pi }{6} อยู่ควอดรันต์ที่ 3 ซึ่งค่า sin จะเป็นลบ และจาก sin( \frac{\pi }{6} ) = \frac{1}{2}

ดังนั้น sin( \frac{7\pi }{6} ) = -\frac{1}{2}  นั่นคือ cosec( \frac{7\pi }{6} ) = -2

  • พิจารณา cot( \frac{4\pi }{3} ) = \inline \frac{cos\left ( \frac{4\pi }{3} \right )}{sin\left ( \frac{4\pi }{3} \right )}

เนื่องจากเรารู้ว่า cos( \frac{4\pi }{3} ) = -\frac{1}{2} 

ดังนั้นเราจะมาพิจารณา sin( \frac{4\pi }{3} ) โดย \frac{4\pi }{3} อยู่ควอดรันต์ที่ 3 ค่า sin เป็นลบ และจากกฎมือซ้าย sin( \frac{\pi }{3}) = \frac{\sqrt{3}}{2}

ดังนั้น sin( \frac{4\pi }{3} ) = -\frac{\sqrt{3}}{2}

จะได้ว่า cot( \frac{4\pi }{3} ) = \inline \frac{cos\left ( \frac{4\pi }{3} \right )}{sin\left ( \frac{4\pi }{3} \right )} = \frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}

ดังนั้น sec( \frac{4\pi }{3} ) + cosec( \frac{7\pi }{6} ) – 3cot( \frac{4\pi }{3} ) = -2 + (-2) – 3( \frac{1}{\sqrt{3}} ) = -4-\frac{3}{\sqrt{3}}

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ภาษาถิ่นใต้

ภาษาถิ่นใต้ มรดกทางวัฒณธรรมที่ควรค่าแก่การศึกษา

ภาษาเป็นส่วนหนึ่งของวัฒนธรรม โดยสิ่งที่สะท้อนให้เห็นถึงวัฒนธรรมผ่านภาษามากที่สุด ก็คือ การมีอยู่ของภาษาถิ่น ซึ่งเป็นภาษาที่ใช้พูดติดต่อสื่อสารตามท้องถิ่นต่าง ๆ เพื่อให้คนในพื้นที่เข้าใจกัน ประเทศไทยมีทั้งหมด 6 ภาค ภาษาถิ่นที่เด่นชัดที่สุดจะแบ่งออกเป็นภาษาถิ่นภาคกลางซึ่งครอบคลุมไปถึงภาคตะวันตะวันตก อาจมีแตกต่างบ้างในเรื่องของคำศัพท์บางคำและสำเนียง ภาษาถิ่นเหนือและภาษาถิ่นอีสาน ที่ได้รับอิทธิพลจากประเทศเพื่อนบ้าน และด้วยภูมิภาคที่อยู่ใกล้กันทำให้บางคำก็ใช้ด้วยกัน และสุดท้าย ภาษาถิ่นใต้ ที่ค่อนข้างจะแตกต่างกับภาษาถิ่นอื่น ๆ แต่จะมีลักษณะ และมีคำศัพท์น่ารู้อะไรบ้างนั้น เราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ภาษาถิ่นใต้  

โจทย์ปัญหาการหารทศนิยม

บทความนี้เป็นเรื่องการวิเคราห์โจทย์ปัญหาการหารทศนิยม ซึ่งโจทย์ที่นำมาเป็นตัวอย่างจะประกอบด้วยการวิเคราะห์โจทย์ปัญหา การเขียนประโยคสัญลักษณ์ รวมไปถึงการสดงวิธีทำ หวังว่าน้องๆจะสามารถนำข้อมูลเหล่านี้ไปใช้ได้จริงกับโจทย์ปัญหาในห้องเรียน

เรียนรู้และเข้าใจเรื่องคำซ้อนในภาษาไทย

คำซ้อน เป็นหนึ่งในบทเรียนหลักภาษาไทยเรื่องการสร้างคำ น้อง ๆ หลายคนอาจจะเคยสับสนกับวิธีสร้างคำซ้อน ไม่รู้ว่าแบบไหนกันแน่ที่เรียกว่าคำซ้อน เพราะภาษาไทยเรานั้นก็มีคำมากมายเหลือเกิน วันนี้เราจะมาเรียนรู้เรื่องคำซ้อนให้มากขึ้น รับรองว่าไม่ยากแน่นอนค่ะ   คำซ้อน     ความหมายของคำซ้อน   คำซ้อน คือ คำที่เกิดจากการนำคำตั้งแต่ 2 คำ ขึ้นไปมาเรียงต่อกัน โดยคำที่นำมาซ้อนกันจะต้องเป็นคำที่มีความหมายเหมือนกัน ใกล้เคียงกัน ตรงข้ามกัน หรืออาจมีเสียงที่คล้ายกัน

ศึกษาตัวบทและคุณค่าของวรรณคดีเรื่องราชาธิราช ตอน สมิงพระรามอาสา

ราชาธิราช   หลังจากได้ศึกษาประวัติความเป็นมาและเรื่องย่ออย่างคร่าว ๆ ของวรรณคดีเรื่องราชาธิราช ตอน สมิงพระรามอาสากันไปแล้ว บทเรียนวันนี้เราจะมาศึกษาเกี่ยวกับตัวบทเด่น ๆ ที่น่าสนใจและคุณค่าที่อยู่ในเรื่องนี้กันค่ะ ไปดูพร้อม ๆ กันเลยนะคะว่าวรรณคดีที่ถูกแปลมาจากพงศาวดารมอญอย่างราชาธิราชเรื่องนี้จะมีตัวบทไหนที่น่าสนใจและให้คุณค่าอะไรบ้าง   ศึกษาตัวบทราชาธิราช ตอน สมิงพระรามอาสา     บทเด่น ๆ บทที่ 1    บทดังกล่าวเกิดขึ้นในตอนที่สมิงพระรามอาสาไปขี่ม้ารำทวนสู้กับกามะนี

การบรรยายตนเอง + Present Simple

สวัสดีนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับตัวเราในภาษาอังกฤษกันค่ะ ได้แก่ “ การบรรยายตนเอง + Present Simple “ พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันเลย   ทบทวน Present Simple Tense     ความหมาย: Present แปลว่า ปัจจุบัน ดังนั้น Present

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1