เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เลขยกกำลัง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะมีความเกี่ยวข้องกับกรณฑ์ในบทความ จำนวนจริงในรูปกรณฑ์ จากที่เรารู้ว่า จำนวนตรรกยะคือจำนวนที่สามารถเขียนอยู่ในรูปเศษส่วนของจำนวนเต็มได้ เช่น \frac{2}3{} , \frac{5}{4}, \frac{1}{2}, 2 , 3 เป็นต้น ดังนั้นเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ ก็คือจำนวนจริงใดๆยกกำลังด้วยจำนวนที่สามารถเขียนในรูปเศษส่วนของจำนวนเต็ม เช่น \mathrm{5^{\frac{2}{3}}} , 3^{\frac{5}{4}} เป็นต้น

โดยนิยามของเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ คือ

เลขยกกำลัง เมื่อ k และ n เป็นจำนวนเต็ม และ n > 1

เราเรียก

เลขยกกำลัง ว่า เลขยกกำลัง

a คือ เลขฐาน

\frac{k}{n} คือ เลขชี้กำลัง

 

ตัวอย่าง

เลขยกกำลัง = \sqrt[3]{5^{2}}

เลขยกกำลัง = \sqrt[4]{3^{5}} = 3\sqrt[4]{3}

สมบัติของ เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

ให้ a, b เป็นจำนวนจริง และ m, n เป็นจำนวนเต็ม

1.) เลขยกกำลัง

ตัวอย่าง

เลขยกกำลัง

(2^x)(2^y)=2^{x+y}

 

2.) เลขยกกำลัง , a\neq 0

ตัวอย่าง

เลขยกกำลัง

 

3.) เลขยกกำลัง

ตัวอย่าง

(7^3)^2=7^{3\times 2}=7^6

 

4.) เลขยกกำลัง

ตัวอย่าง

เลขยกกำลัง

 

5.)  เลขยกกำลัง

ตัวอย่าง

\frac{3^2}{5^2}=(\frac{3}{5})^2

 

ตัวอย่างการใช้งานสมบัติและนิยาม

 

ตัวอย่างต่อไปนี้จะเป็นการเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะให้อยู่ในรูปอย่างง่าย

เลขยกกำลัง

การบวก ลบ คูณ และหาร เลขยกกำลัง

ตัวอย่างนี้เป็นวิธีการบวก ลบ คูณ หาร เลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เราจะหาค่าของ 2^{0}+(0.027)^{\frac{1}{3}}+(8)^{\frac{1}{3}}(25)^{\frac{1}{2}}-(0.0081)^{\frac{1}{4}}

การที่ตัวเลขเหล่านี้จะบวกลบกันได้ง่ายขึ้นอาจจะต้องทำให้เลขชี้กำลังหายหรือทำให้เป็นจำนวนเต็ม

เราลองมาจัดรูปใหม่ โดยการพิจารณาตัวเลขต่อไปนี้

2^{0} = 1

0.027 = 0.3^3

8=2^3

25=5^2

0.0081=0.3^4

ดังนั้นจะได้รูปใหม่ได้เป็น

เลขยกกำลัง

 

 

วิดีโอเพิ่มเติม

 

การทำแบบฝึกหัดในบทความนี้ไม่มีวิธีที่แน่นอนตายตัวบางข้ออาจจะต้องใช้สมบัติหลายอย่าง บางข้ออาจจะต้องใช้นิยามช่วย แบบฝึกหัดเหล่านี้ต้องอาศัยการสังเกตและอาศัยการฝึกทำแบบฝึกหัดบ่อยๆ เพื่อที่น้องๆจะได้เจอแบบฝึกหัดหลายรูปแบบและจะทำให้น้องๆพร้อมสำหรับการสอบในสนามสอบต่างๆอีกด้วย

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

อิเหนา

อิเหนา จากนิทานปันหยีสู่วรรณคดีเลื่องชื่อของไทย

อิเหนา เป็นวรรณคดีที่ถูกเผยแพร่เข้ามาในไทยตั้งแต่สมัยกรุงศรีอยุธยา น้อง ๆ สงสัยไหมคะว่าจุดเริ่มต้นของนิทานของชาวชวานี้มีจุดเริ่มต้นในไทยอย่างไร เหตุใดถึงถูกประพันธ์ขึ้นเป็นบทละครให้ได้เล่นกันในราชสำนัก ถ้าน้อง ๆ พร้อมหาคำตอบแล้ว เราไปเรียนรู้ประวัติความเป็นมาและเรื่องย่อของอิเหนา ตอน ศึกกะหมังกุหนิงกันเลยค่ะ   ความเป็นมา   อิเหนามีความเป็นมาจากนิทานปันหยี หรือที่เรียกว่า อิเหนาปันหยีรัตปาตี ซึ่งเป็นนิทานที่เล่าแพร่หลายกันมากในชวา เชื่อกันว่าเป็นนิยายอิงประวัติศาสตร์ของชวา ในสมัยพุทธศตวรรษที่ 16 ปรุงแต่งมาจากพงศาวดารชวา อิทธิพลของเรื่องอิเหนาเข้ามาในประเทศไทยครั้งแรกในสมัยอยุธยา จากการที่เจ้าฟ้าหญิงกุณฑลและเจ้าฟ้าหญิงมงกุฎ

สังข์ทอง จากนิทานชาดกสู่วรรณคดีไทยอันเลื่องชื่อ

สังข์ทอง เป็นวรรณคดีที่แพร่หลายและโด่งดังอย่างมากในสังคมไทย ไม่ว่าเวลาจะผ่านไปกี่ร้อยปี ความนิยมของวรรณคดีเรื่องดังกล่าวนี้ก็ยังไม่เสื่อมคลาย ดูได้จากการที่ถูกผลิตซ้ำตั้งแต่เป็นกลอนบทละครจนถึงละครโทรทัศน์ ที่น้อง ๆ หลายคนก็คงจะเดินเห็นผ่านตากันมาแล้วบ้าง บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ถึงความเป็นมาของวรรณคดีเรื่องนี้ พร้อมเรื่องย่อหนึ่งตอนสำคัญที่เป็นเหมือนจุดเริ่มต้นของเรื่องราวทั้งหมดอย่างตอน กำเนิดพระสังข์ กันค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยนะคะ   สังข์ทอง ความเป็นมา     สังข์ทอง มีที่มาจาก สุวรรณสังขชาดก

ส่วนต่างๆ ของวงกลม

ส่วนต่างๆ ของวงกลม ก่อนที่เราจะมารู้จักส่วนต่างๆ ของวงกลม เรามาเริ่มรู้จักวงกลมกันก่อน จากคำนิยามของวงกลมที่กล่าวว่า “วงกลมเกิดจากชุดของจุดที่มาเรียงต่อกันบนระนาบเดียวกัน โดยทุกจุดอยู่ห่างจากจุดจุดหนึ่งซึ่งเป็นจุดคงที่ในระยะทางที่เท่ากันทุกจุด”   โดยเรียกจุดคงที่นี้ว่า จุดศูนย์กลางของวงกลม เรียกระยะทางที่เท่ากันนี้ว่า รัศมีของวงกลม       วงกลม คือ รูปทรงเรขาคณิตที่มีสองมิติเเละจะมีมุมภายในของวงกลมที่มีขนาด 360 องศา โดยทั่วไปในชีวิตประจำวัน เราจะเห็นสิ่งที่มีลักษณะเป็นวงกลมอยู่รอบ ๆ ตัวเราอยู่เยอะเเยะมากมาย

เรขาคณิตสามมิติ

เรขาคณิตสามมิติ

ในบทความนี้เราจะได้เรียนรู้กับรูปเรขาคณิตสามมิติและส่วนประกอบต่างๆ เพื่อนำไปประยุกต์ใช้ในชีวิตประจำวันได้อย่างถูกต้อง

การใช้ Auxiliary Verb: can, can’t

การใช้ Auxiliary Verb: can, can’t  บทนำแสนแซ่บ สวัสดีครับพ่อแม่พี่น้องสุดปังทุกท่าน วันนี้เรามาคุยกันเรื่องของคำกริยาช่วยที่ทำให้เรารู้ว่าคนนั้น ๆ สิ่งนั้น หรืออันนั้นมีความสามารถในการทำอะไรได้บ้างกันดีกว่า  ในภาษาไทยเอง เวลาเราจะอธิบายว่าเรามีความสามารถอะไรเราก็มักจะพูดว่า “เรา… ทำได้” หรือ “เราสามารถ….ทำได้” โดยภาษาอังกฤษสุดที่รักของเราเองก็มีอะไรแบบนั้นเหมือนกัน โดยเค้าใช้คำว่า Can มาช่วย โดยเราจะเรียกคำกริยาช่วยเหลือนี้ว่า Auxiliary verb หรือ

สำนวนภาษาอังกฤษสำหรับการให้ความช่วยเหลือ และการให้คำแนะนำผู้อื่น

สำนวนภาษาอังกฤษสำหรับการให้ความช่วยเหลือและการให้คำแนะนำผู้อื่น

สวัสดีค่ะนักเรียนชั้นม.1 ที่น่ารักทุกคน วันนี้ครูจะพาไป เรียนรู้สำนวนภาษาอังกฤษสำหรับการให้ความช่วยเหลือและการให้คำแนะนำผู้อื่น ( Idioms for helping and giving advice to others) กันนะคะ ไปลุยกันเลย   บทนำ     สำนวนที่ใช้ในการถามและการให้คำแนะนำ นั้น คำศัพท์ที่เจอส่วนใหญ่มักจะมีคำว่า “advise” แปลว่า แนะนำ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1