วงรี

วงรี

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

วงรี

วงรี จะประกอบไปด้วย

1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า

2) จุดยอด

3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก

4) ความเยื้องศูนย์กลาง (eccentricity)

วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด

วงรี

จากกราฟ
สมการรูปแบบมาตรฐาน:    \frac{x^2}{a^2}+\frac{y^2}{b^2}=1
จุดยอด : (a, 0) และ (-a, 0)
แกนเอก : แกน X ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (c, 0) และ (-c, 0)
ความเยื้องศูนย์กลาง(eccentricity):  e=\frac{c}{a}

วงรี

จากกราฟ
สมการรูปแบบมาตรฐาน:    \frac{y^2}{a^2}+\frac{x^2}{b^2}=1
จุดยอด : (0, a) (0, -a)
แกนเอก : แกน Y ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (0, c) และ (0, -c)
ความเยื้องศูนย์กลาง(eccentricity): e=\frac{c}{a}

***ความเยื้องศูนย์กลางของวงรี คือ อัตราส่วนของ c ต่อ a เมื่อ c=\sqrt{a^2-b^2} ***

วงรี

วงรีที่มีจุดศูนย์กลางที่ (h, k)

วงรี

แกนเอกขนานแกน X

สมการรูปแบบมาตรฐาน:  \frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1
จุดยอด : (h + a, k) และ (h – a, k)
แกนเอก : ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (h + c, k) และ (h – c, k)

แกนเอกขนานแกน Y

สมการรูปแบบมาตรฐาน : \frac{(y-k)^2}{a^2}+\frac{(x-h)^2}{b^2}=1
จุดยอด : (h, k + a) (h, k – a)
แกนเอก : ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (h, k + c) และ (h, k – c)

ตัวอย่าง

1. จงหาโฟกัสของวงรีที่มีสมการคือ

วงรี

2. วงรีรูปหนึ่ง มีจุดยอดอยู่ที่ (4,0) และ (-4,0) และโฟกัสอยู่ที่ (3,0) และ (-3,0) จงหาสมการของวงรี

วงรี

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ProfilePastTense

มารู้จักกับ Past Tenses กันเถอะ

สวัสดีค่ะนักเรียนที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิคและวิธีการใช้ Past Tenses ที่ไม่ได้มีแค่ Past Simple Tenses นะคะ   มาทบทวนเรื่อง Past Tenses กันเถอะ     การพูดถึงเหตุการณ์ที่เกิดในอดีตนั้นสามารถพูดได้หลายรูปแบบ แต่จะพูดอย่างไรให้สอดคล้องกับบริบทนั้นย่อมสำคัญเช่นกัน และก่อนอื่นเราจะต้องรู้จักก่อนว่า การเล่าถึงงเหตุการณ์ในอดีตนั้นเราสามารถเล่าได้หลายแบบ ครูจะขอยกตัวอย่างจากสถาณการณ์การใช้ไปหาโครงสร้างและคำศัพท์ที่จำเป็นเพื่อให้เราเข้าใจความสำคัของ Tense นั้นๆ ร่วมกับเทคนิค “Situational

สมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว สมการ คือ ประโยคสัญลักษณ์ที่กล่าวถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  “ = ”  บอกความสัมพันธ์ระหว่างจำนวน อาจมีตัวแปร หรือไม่มีตัวแปร เช่น สมการที่ไม่มีตัวแปร                           

ร้อยละ

การคำนวณร้อยละในชีวิตประจำวัน

บทความนี้เราจะได้เรียนรู้ความหมายของคำว่าร้อยละ หรือเปอร์เซ็นต์ รวมทั้งความสัมพันธ์ของอัตราส่วนที่คิดคำนวณเป็นร้อยละ หรือเปอร์เซ็นต์ ที่จะทำให้เราสามารถนำไปใช้ได้จริงในชีวิตประจำวัน

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

รากที่ n ของจำนวนจริง รากที่ n ของจำนวนจริง คือจำนวนจริงตัวหนึ่งยกกำลัง n แล้วเท่ากับ x   เมื่อ n > 1 เราสามารถตรวจสอบรากที่ n ได้ง่ายๆ โดยนิยามดังนี้ นิยาม ให้  x, y เป็นจำนวนจริง และ n

จำนวนจริงในรูปกรณฑ์ และเลขยกกำลัง

จำนวนจริงในรูปกรณฑ์ จำนวนจริงในรูปกรณฑ์ หรือราก เขียนแทนด้วย อ่านว่า รากที่ n ของ x หรือ กรณฑ์ที่ n ของ x เราจะบอกว่า จำนวนจริง a เป็นรากที่ n ของ x ก็ต่อเมื่อ เช่น 2 เป็นรากที่

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1