วงรี

วงรี

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

วงรี

วงรี จะประกอบไปด้วย

1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า

2) จุดยอด

3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก

4) ความเยื้องศูนย์กลาง (eccentricity)

วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด

วงรี

จากกราฟ
สมการรูปแบบมาตรฐาน:    \frac{x^2}{a^2}+\frac{y^2}{b^2}=1
จุดยอด : (a, 0) และ (-a, 0)
แกนเอก : แกน X ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (c, 0) และ (-c, 0)
ความเยื้องศูนย์กลาง(eccentricity):  e=\frac{c}{a}

วงรี

จากกราฟ
สมการรูปแบบมาตรฐาน:    \frac{y^2}{a^2}+\frac{x^2}{b^2}=1
จุดยอด : (0, a) (0, -a)
แกนเอก : แกน Y ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (0, c) และ (0, -c)
ความเยื้องศูนย์กลาง(eccentricity): e=\frac{c}{a}

***ความเยื้องศูนย์กลางของวงรี คือ อัตราส่วนของ c ต่อ a เมื่อ c=\sqrt{a^2-b^2} ***

วงรี

วงรีที่มีจุดศูนย์กลางที่ (h, k)

วงรี

แกนเอกขนานแกน X

สมการรูปแบบมาตรฐาน:  \frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1
จุดยอด : (h + a, k) และ (h – a, k)
แกนเอก : ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (h + c, k) และ (h – c, k)

แกนเอกขนานแกน Y

สมการรูปแบบมาตรฐาน : \frac{(y-k)^2}{a^2}+\frac{(x-h)^2}{b^2}=1
จุดยอด : (h, k + a) (h, k – a)
แกนเอก : ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (h, k + c) และ (h, k – c)

ตัวอย่าง

1. จงหาโฟกัสของวงรีที่มีสมการคือ

วงรี

2. วงรีรูปหนึ่ง มีจุดยอดอยู่ที่ (4,0) และ (-4,0) และโฟกัสอยู่ที่ (3,0) และ (-3,0) จงหาสมการของวงรี

วงรี

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

who what where

Who What Where กับ Verb to be

สวัสดีน้องๆ ม. 2 ทุกๆ คนนะครับ วันนี้เรามาทำความเข้าใจเกี่ยวกับการใช้ Who/What/Where ร่วมกับ Verb to be กันครับ ไปดูกันเลย

กราฟของความสัมพันธ์เชิงเส้น ปก

กราฟของความสัมพันธ์เชิงเส้น

บทความนี้จะเป็นการสอนวิธีการเขียน กราฟของความสัมพันธ์เชิงเส้น ซึ่งทำได้โดยการหาความสัมพันธ์ของจำนวนสองจำนวน เขียนให้อยู่ในรูปคู่อันดับ และเขียนกราฟแสดงความสัมพันธ์ข้างต้น ซึ่งน้องๆสามารถศึกษาการเขียนกราฟของความสัมพันธ์เชิงเส้นเพิ่มเติมได้ที่  ⇒⇒ กราฟของความสัมพันธ์เชิงเส้น ⇐⇐ คู่อันดับ กราฟของความสัมพันธ์เชิงเส้น เขียนแสดงความเกี่ยวข้องของปริมาณสองปริมาณที่กำหนดให้ โดยความสัมพันธ์ระหว่างปริมาณสองปริมาณที่พบในชีวิตประจำวัน เช่น ปริมาณของน้ำประปาที่ใช้กับค่าน้ำ ปริมาณเวลาในการใช้โทรศัพท์กับค่าโทรศัพท์ ระยะทางที่โดยสารรถประจำทางปรับอากาศกับค่าโดยสาร ปริมาณของกระแสไฟฟ้ากับค่าไฟฟ้า เป็นต้น เราสามารถเขียนแสดงความสัมพันธ์เหล่านี้ในรูปตาราง แผนภาพ คู่อันดับ รวมทั้งแสดงในรูปของกราฟได้ ซึ่งในหัวข้อนี้ เราจะทำความรู้จักกับคู่อันดับกันก่อนนะคะ

ตัวหารร่วมมาก (ห.ร.ม.)

ตัวหารร่วมมาก (ห.ร.ม.)

             ตัวหารร่วมมาก (ห.ร.ม.) ตัวหารร่วมมาก (ห.ร.ม.) ของจำนวนนับตั้งแต่สองจำนวนขึ้นไปนั้น  เป็นการหาตัวหารร่วมหรือตัวประกอบร่วมที่มีค่ามากที่สุดของจำนวนนับเหล่านั้น ในบทความนี้ได้รวบรวมวิธี การหา ห.ร.ม. ไว้ทั้งหมด 3 วิธี น้องๆอาจคุ้นชินกับ การหา ห.ร.ม. โดยวิธีตั้งหาร แต่น้องๆทราบหรือไม่ว่าวิธีการหา ห.ร.ม. มีวิธีการดังต่อไปนี้ การหา ห.ร.ม. โดยการหาผลคูณร่วม การหา ห.ร.ม.

NokAcademy_บอกเวลาเป็นภาษาอังกฤษ

เรียนรู้เกี่ยวกับการบอกเวลา

Hi guys! สวัสดีค่ะนักเรียนชั้น ม.1 ที่น่ารักทุกคน วันนี้เราจะไป เรียนรู้เกี่ยวกับการบอกเวลา กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลย Let’s go! การแบ่งประเภท     ในบทเรียนนี้ครูขอยกตัวอย่างการบอกเวลาที่นิยมใช้กันโดยทั่วไปใน 2 รูปแบบ ตามที่มาของ Native English หรือ ภาษาอังกฤษของเจ้าของภาษา นะคะ  ดังตัวอย่างดังต่อไปนี้  

วิธีเขียน คำขวัญ ให้ถูกใจคนอ่าน

น้อง ๆ หลายคนคงจะคุ้นเคยกับคำขวัญกันเป็นอย่างนี้ เพราะในวันสำคัญต่าง ๆ อย่างวันเด็ก นายกรัฐมนตรีของประเทศในแต่ละสมัยก็จะให้คำขวัญแก่เด็ก ๆ ทุกปี แต่ทราบหรือไม่คะว่า คำขวัญ นั้นคืออะไรกันแน่ มีจุดมุ่งหมาย ลักษณะ และวิธีการเขียนอย่างไร บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่องราวทั้งหมดนั้นของคำขวัญ ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   คำขวัญ คืออะไร   คำขวัญ คือ

หลักการเบื้องต้นของอัตราส่วน

หลักการเบื้องต้นของอัตราส่วน

“อัตราส่วน คือ ปริมาณ อย่างหนึ่งที่แสดงถึง จำนวน หรือ ขนาด ตามสัดส่วนเมื่อเปรียบเทียบกับอีก ปริมาณ หนึ่งที่เกี่ยวข้องกัน ที่อาจมีได้ตั้งแต่สองปริมาณขึ้นไป”

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1