ฟังก์ชันและกราฟของฟังก์ชัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y

 

ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ

จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B

เซต A จะถูกเรียกว่า โดเมน และ สมาชิกของ x แต่ละตัวใน A ที่ถูกส่งไปยัง สมาชิกบางตัวของ y เราจะเรียกสมาชิกบางตัวของ y ว่า ภาพของ x และเรียกสมาชิกในภาพว่า เรนจ์

อ่านแล้วอาจจะงงๆลองมาดูตัวอย่างกันค่ะ

ตัวอย่าง

จากรูปจะเห็นว่า เรนจ์ไม่จำเป็นต้องเท่ากับ B สมาชิกบางตัวของ B ไม่จำเป็นต้องเป็นสมาชิกในเรนจ์ก็ได้

เมื่อเราเข้าใจว่าโดเมน และเรนจ์แล้วเรามาทำความเข้าใจกับฟังก์ชันและกราฟของฟังก์ชันกันต่อเลยค่ะ

ฟังก์ชัน

 

ฟังก์ชัน หมายถึง ความสัมพันธ์ (x, y) ใดๆ โดยที่ ถ้าตัวหน้าเหมือนกัน ตัวหลังจะต้องเหมือนกัน

แปลให้ง่ายก็คือ สมาชิกตัวหน้าจะต้องไม่เหมือนกันนั่นเองค่ะ

เช่น (1, 2) (2, 5) (-3, 4) เป็นฟังก์ชัน เพราะไม่สมาชิกของโดเมน จับคู่กับเรนจ์มากกว่า 1 ตัว

ในกรณีที่ฟังก์ชันเป็นกราฟ ให้เราลากเส้นขนาดแกน y ถ้าเกิดว่าเส้นที่เราสร้างขึ้นมาตัดกับกราฟของฟังก์ชันเกิน 1 จุด สรุปได้เลยว่ากราฟนั้นไม่เป็นฟังก์ชัน

เพราะอะไรถึงไม่เป็นฟังก์ชัน??

จากนิยามที่บอกว่า สมาชิกตัวหน้าต้องไม่เหมือนกัน

สมมติฟังก์ชันตัดกับกราฟที่เราสร้างขึ้น 2 จุด แสดงว่าค่า x 1 ค่า เกิดค่า y 2 ค่า มันก็เหมือนกับว่าสมาชิกตัวหน้ามันเหมือนกัน จึงไม่เป็นฟังก์ชัน

เช่น 

จากกราฟข้างต้นจะเห็นว่า เมื่อ x = 1 จะได้  y = 1 , -1 จะเห็นกว่า ได้ค่า y มาสองค่า กราฟนี้จึงไม่เป็นฟังก์ชันนั่นเอง

ฟังก์ชันจาก A ไป B

ให้ f เป็นฟังก์ชัน

f เป็นฟังก์ชันจาก A ไป B ก็ต่อเมื่อ f เป็นฟังก์ชันที่มีโดเมนเป็น A และเรนจ์เป็นสับเซตของ B

เขียนแทนด้วย  f : A →B

หมายความว่า สมาชิกทุกตัวใน A ทุกใช้จนหมด แต่สมาชิกใน B ไม่จำเป็นต้องถูกใช้ทุกตัว

เช่น

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันจาก A ไปทั่วถึง B

f เป็นฟังก์ชันจาก A ไปทั่วถึง B ก็ต่อเมื่อ f เป็นฟังก์ชันที่มีโดเมนเป็น A และเรนจ์เป็น B

หมายความว่า สมาชิกทั้งในเซต A และ B ถูกใช้จนหมด

เช่น

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B

f เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B ก็ต่อเมื่อ f เป็นฟังก์ชันจาก A ไป B ซึ่ง เมื่อส่งสมาชิกใน A ไปแล้วจะต้องได้ค่าเรนจ์ที่แตกต่างกัน

หมายความว่า ค่า x 2 ค่า จะต้องไม่ได้ค่า y ที่ซ้ำกันนั่นเอง

เช่น 

ฟังก์ชันและกราฟของฟังก์ชัน

 

f เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไปทั่วถึง B หมายความว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่งและเป็นฟังก์ชันทั่วถึง

 

กราฟของฟังก์ชัน

 

กราฟของฟังก์ชัน คือ กราฟของความสัมพันธ์ที่กำหนดโดยสมการ y = f(x) ในระบบพิกัดฉากซึ่งประกอบไปด้วยจุดที่มีคู่อันดับเป็น (x, y) โดยที่ x เป็นสมาชิกในโดเมนของฟังก์ชัน และ y หรือ f(x) เป็นค่าของฟังก์ชันที่ขึ้นอยู่กับ x  และเราสามารถนำฟังก์ชันนี้มาเขียนกราฟในระบบพิกัดฉากได้

อธิบายง่ายๆได้ใจความคือ x เป็นตัวแปรอิสระ และ y เป็นตัวแปรตาม

ค่าของ y จะเปลี่ยนไปตาม x นั่นเอง

 

เช่น   y = x + 2 หรือเขียนอีกแบบคือ f(x) = x + 2

สมมติเราให้ x = 0 เราจะได้ว่า y = 0 + 2 นั่นคือ y = 2

สมมติให้ x = 1 เราจะได้ว่า y = 1 + 2 นั่นคือ  y = 3

ให้ x = -2  เราจะได้ว่า  y = (-2) + 2 นั่นคือ y = 0

เราจะเห็นว่า เมื่อค่า x เปลี่ยนไปค่า y ก็จะเปลี่ยนตามค่าของ x

จากการแทนค่าข้างต้น เราสามารถเขียนคู่อันดัล (x, y) ได้ดังนี้

(0, 2) , (1, 3) , (-2, 0)

และจากคู่อันดับเราสามารถนำมาเขียนกราฟได้ดังนี้

ฟังก์ชันและกราฟของฟังก์ชัน

 

การเขียนกราฟโดยการเลื่อนขนาน

ถ้า c > 0 แล้วจะได้ว่า

  1. กราฟของ y = f(x) + c คือ กราฟของ y = f(x) ที่ถูกเลื่อนขึ้นไปข้างบนเป็นระยะ c หน่วย
  2. กราฟของ y = f(x) – c คือ กราฟของ y = f(x) ที่ถูกเลื่อนลงข้างล่างเป็นระยะ c หน่วย
  3. กราฟของ y = f(x + c) คือ กราฟของ y = f(x) ที่ถูกเลื่อนไปทางขวาเป็นระยะ c หน่วย
  4. กราฟของ y = f(x – c) คือ กราฟของ y = f(x) ที่ถูกเลื่อนไปทางซ้ายเป็นระยะ c หน่วย

ตัวอย่าง

จงเขียนกราฟของ f(x)=\left | x \right |+5

กราฟของ f(x)=\left | x \right |+5 คือ กราฟของ y= \left | x \right | ที่ถูกเลื่อนขึ้นข้างบน 5 หน่วยนั่นเอง 

เขียนกราฟได้ดังนี้

ฟังก์ชันและกราฟของฟังก์ชัน

 

วิดีโอเกี่ยวกับ ฟังก์ชันและกราฟของฟังก์ชัน

 

ฟังก์ชัน

 

 

กราฟของฟังก์ชัน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สมบัติของจำนวนเต็ม

สมบัติของจำนวนเต็ม

ก่อนที่น้องๆจะได้เรียนรู้ในเรื่องสมบัติของจำนวนเต็ม น้องๆจำเป็นต้องเรียนเรื่อง การเปรียบเทียบจำนวนเต็ม และเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์  ซึ่งบทความนี้ได้รวบรวมสมบัติของจำนวนเต็ม ประกอบด้วย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม ได้แก่ สมบัติการสลับที่ สมบัติการเปลี่ยนหมู่ และสมบัติการแจกแจง  รวมไปถึงสมบัติของหนึ่งและศูนย์ เรามาศึกษาสมบัติแรกกันเลย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม สมบัติการสลับที่ สมบัติการสลับที่สำหรับการบวก ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a + b =

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง การแก้สมการกำลังสอง สามารถทำได้โดยการ แยกตัวประกอบพหุนามกำลังสอง และใช้สูตร เราแก้สมการเพื่อหาคำตอบหรือหาค่าของตัวแปร ในบทความนี้พี่จะพูดถึงสมการกำลังสองตัวแปรเดียว ซึ่งอยู่ในรูป ax² + bx + c = 0 โดยที่ a, b, c เป็นค่าคงตัว และ a ≠ 0 ตัวอย่างสมการกำลังสองตัวแปรเดียว 

เรียนรู้การเขียนเชิงวิชาการ อย่างง่ายเพียง 4 ขั้นตอน

การเขียนเชิงวิชาการ อาจจะดูเป็นการเขียนที่ยากในความคิดของหลาย ๆ คน เพราะดันมีคำว่า วิชาการ อยู่ด้วยนั่นเอง แต่น้อง ๆ ทราบไหมคะว่าที่จริงแล้วการเขียนเชิงวิชาการนั้นไม่ได้ยุ่งยากและซับซ้อนเลย แถมยังมีวิธีขั้นตอนการเขียนที่ง่าย ๆ เพียงไม่กี่ขั้นตอนเท่านั้น ถ้าน้อง ๆ อยากรู้แล้วว่ามันจะง่ายขนาดนั้นจริงหรือ? เราไปหาคำตอบของเรื่องนี้พร้อมกันเลยค่ะ   การเขียนเชิงวิชาการ คืออะไร?   คือ องค์ความรู้เชิงวิชาการที่ได้จากการตกผลึกทางความคิดของผู้เขียนที่ต้องการถ่ายทอดหรือสื่อสารให้ผู้อื่นได้รับรู้ผ่านกระบวนการเรียบเรียง โดยอาศัยการศึกษาค้นคว้า สำรวจ

การวัด

การวัดและความเป็นมาของการวัด

ในบทความนี้เราจะได้เรียนรู้ความเป็นมาของการวัดในหลายๆมิติ จนกระทั่งวิวัฒนาการที่ทำให้ได้ความแม่นยำในการวัดอย่างเป็นมาตรฐานมากขึ้นเรื่อยๆ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1