การดำเนินการของเซต

การดำเนินการของเซตประกอบไปด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต และผลต่าง เรื่องนี้เป็นอีกหนึ่งเรื่องที่เราจะได้ใช้ในบทต่อๆไป เรื่องนี้จึงค่อนข้างมีประโยชน์ในเรื่องของการเรียนเนื้อหาบทต่อไปง่ายขึ้น

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การดำเนินการของเซต คือ การนำเซตที่มีอยู่แล้วมาดำเนินการเพื่อให้ได้เซตใหม่ เราจะใช้แผนภาพเวนน์-ออยเลอร์เพื่อช่วยให้เห็นภาพและเข้าใจได้ง่ายขึ้น

การเขียนแผนภาพ เราจะใช้เอกภพสัมพัทธ์ U ด้วยรูปสี่เหลี่ยมผืนผ้า ส่วนเซตที่อยู่ใน U เราอาจจะเขียนแทนด้วยวงกลม วงรี หรือรูปอื่นๆ เช่น

การยูเนียน (union)

เราจะใช้สัญลักษณ์ ∪ แทนการยูเนียน

A ∪ B อ่านว่า A ยูเนียน B คือการเอาสมาชิกทั้งหมดในเซต A รวมกับ สมาชิกทั้งหมดในเซต B

เช่น ให้ A = {1,2,3} B = {1,a,b,c} จะได้ A∪B = {1,2,3,a,b,c}

สมบัติของการยูเนียน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∪Ø = A

2.) A∪B = B∪A

3.) A∪(B∪C) = (A∪B)∪C

4.) A∪A = A

การอินเตอร์เซกชัน (intersection)

เราจะใช้สัญลักษณ์ ∩ แทนการอินเตอร์เซกชัน

A∩B อ่านว่า A อินเตอร์เซกชัน B คือ เซตที่สร้างมาจากส่วนที่ A กับ B มีสมาชิกร่วมกัน

เช่น A = {1,2,3,4,5}  B = {2,4,5,a,b} จะได้ว่า A∩B = {2,4,5}

A∩B คือส่วนที่ A กับ B ซ้ำกัน

สมบัติของการอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∩Ø = Ø

2.) A∩U = A

3.) A∩B = B∩A

4.) (A∩B)∩C = A∩(B∩C) 

5.) A∩A = A

ตัวอย่างการยูเนียนและอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์ U

ให้แรเงาตามที่โจทย์กำหนด

1.) AB

2.) A∩B

3.) (A∩B)C

เราจะทำในวงเล็บก่อน

4.) A∩B∩C

ส่วนเติมเต็ม (complement)

ให้A เป็นเซตย่อยของ U เราจะใช้ A′ แทน ส่วนเติมเต็มของ A

พูดให้เข้าใจง่าย A′ ก็คือ ส่วนที่ไม่ใช่ A 

สมบัติของส่วนเติมเต็ม

ให้ A และ B เป็นเซตย่อยของ U

1.) (A′)′ = A

2.) A∩A′ = Ø

3.) AA′ = U

4.) (AB)′ = A′∩B′

5.) (A∩B)′ = A′B′

6.) Ø′ = U

7.) U′ = Ø

ผลต่างเซต (difference)

ให้ A และ B เป็นเซตย่อยของ U 

ผลต่างของเซต A กับเซต B เขียนแทนด้วย A-B 

A-B คือเซตที่มีสมาชิกของA แต่ไม่มีสมาชิกของ B


trick!! A-B ก็คือ เอาA ไม่เอา B

เช่น A = {1,2,3,4,a,b,c,d} B = {3,4,c,d,e,f}

จะได้ว่า A-B = {1,2,a,b} และ B-A = {e,f}

ภาพประกอบตัวอย่าง

สมบัติที่ควรรู้

 

ตัวอย่าง

ระบายสีตามที่โจทย์กำหนดให้

2.) ให้เอกภพสัมพัทธ์ U = {0,1,2,3,4,5,6,7,8,10}

A ={0,1,3,5,7,9},  B = {0,2,4,6,8,10}

C = {0,3,5,6,8}

จงหา

1.) (A∪B′)∪C

วิธีทำ จากโจทย์ จะได้ว่า (A∪B′)∪C = (A∪C)∪(B′∪C)

พิจารณา A∪C 

จากนั้นพิจารณา B′∪C

และนำทั้งสองมายูเนียนกัน จะได้

ดังนั้น (A∪B′)∪C = {0,1,3,5,6,7,8,9}

 

2.) (A∪C)∩(A∪B)

วิธีทำ พิจารณา (A∪C) จะได้

จากนั้นพิจารณา (A∪B) จะได้

จากนั้นก็นำทั้งสองมาอินเตอร์เซกชัน เราจะได้ส่วนที่ซ้ำกันดังนี้

ดังนั้น (A∪C)∩(A∪B) = {0,1,3,5,6,7,8,9}

 

3.) A-(B∩C)

วิธีทำ พอจารณา (B∩C) จะได้

จากนั้นพิจารณา A-(B∩C) จะได้

ดังนั้น A-(B∩C) = {1,3,5,7,9}

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_Finite and Non- Finite Verb

Finite and Non- Finite Verb

Hi guys! สวัสดีค่ะนักเรียนชั้นม.6 ทุกคน วันนี้ครูจะพาไปทบทวนการใช้ “Finite and Non- Finite Verb” ในภาษาอังกฤษกันจร้า ถ้าพร้อมแล้วก็ไปลุยกันโลดจร้า   คำเตือน: การเรียนเรื่องนี้จะทำให้นักเรียนมึนงงได้หากว่าพื้นฐานเรื่อง Part of speech, Subject , Tense, Voice และ Mood ของเราไม่แน่น

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

รากที่ n ของจำนวนจริง รากที่ n ของจำนวนจริง คือจำนวนจริงตัวหนึ่งยกกำลัง n แล้วเท่ากับ x   เมื่อ n > 1 เราสามารถตรวจสอบรากที่ n ได้ง่ายๆ โดยนิยามดังนี้ นิยาม ให้  x, y เป็นจำนวนจริง และ n

ความยาวรอบรูปเเละพื้นที่ของวงกลม

ความยาวรอบรูปเเละพื้นที่ของวงกลม ความยาวรอบรูปของวงกลม หรือเรียกว่า ความยาวเส้นรอบวงของวงกลม คือ ความยาวของเส้นรอบวงกลมสามารถคำนวณได้ ดังนี้ โดย:  C        คือ ความยาวของเส้นรอบวง (หน่วยเป็น เมตร, เซนติเมตร, มิลิเมตร เป็นต้น) π         คือ อัตราส่วนระหว่างเส้นรอบวงกับรัศมี มีค่าประมาณ 22/7 หรือ

คำที่ยืมมาจากภาษาญี่ปุ่นและจีน

คำที่ยืมมาจากภาษาญี่ปุ่นและจีน มีอะไรบ้างในภาษาไทย

  คำที่ยืมมาจากภาษาญี่ปุ่นและจีน น้อง ๆ ทราบไหมคะว่ามีคำไหนบ้าง ทั้งสองประเทศนี้คือประเทศในแทบเอเชียเหมือนกัน แต่ก็ไม่ได้อยู่ใกล้เรานัก แล้วทำไมถึงมีคำจากภาษาญี่ปุ่นและจีนเข้ามาปะปนอยู่ในชีวิตประจำได้ บทเรียนภาษาไทยเรื่องลักษณะคำที่ยืมมาจากภาษาญี่ปุ่นและจีนในวันนี้จะพาน้อง ๆ ไปศึกษาและทำความเข้าใจเกี่ยวกับคำศัพท์ต่าง ๆ ที่ยืมมา จะมีคำไหนบ้าง ไปดูพร้อมกันเลยค่ะ   ที่มาของภาษาญี่ปุ่นและจีนในภาษาไทย     คำที่ยืมมาจากญี่ปุ่นและจีน มีด้วยกันมากมายหลายคำเลยค่ะ บางคำ อาจจะไม่ทันสังเกตด้วยซ้ำว่าเป็นภาษาญี่ปุ่นกับจีน ไม่ใช่คำภาษาไทย เพราะสองประเทศในเอเชียนี้เข้ามามีอิทธิพลกับประเทศมาตั้งแต่โบราณ

การเขียนคำอวยพร

การเขียนคำอวยพร เขียนอย่างไรให้เหมาะสมกับผู้รับ

  วัฒนธรรมเป็นส่วนหนึ่งของสังคม และภาษาก็เป็นส่วนหนึ่งของวัฒนธรรม คนเราทุกคนต่างต้องการในสิ่งดีงาม เมื่อถึงโอกาสสำคัญอย่างวันเกิด วันแต่งงาน วันขึ้นบ้านใหม่ จึงต้องการคำอวยพรที่สร้างกำลังใจ และเป็นสิริมงคลแก่ตัวเอง คำอวยพรจึงเป็นเหมือนสิ่งสะท้อนวัฒนธรรม ที่คนใช้สื่อสาร ถ่ายทอดเพื่อมอบสิ่งดี ๆ ให้แก่กัน บทเรียนในวันนี้ น้อง ๆ จะได้เรียนรู้เกี่ยวกับ การเขียนคำอวยพร เราไปดูพร้อมกันเลยค่ะว่าการเขียนประเภทนี้จะมีลักษณะและวิธีอย่างไรบ้าง   การเขียนคำอวยพร   ความหมายของคำอวยพร คำอวยพร

การแยกตัวประกอบ

การแยกตัวประกอบ

การแยกตัวประกอบ การแยกตัวประกอบ ของจำนวนนับใด หมายถึง การเขียนจำนวนนับนั้นในรูปการคูณของ ตัวประกอบเฉพาะ  ซึ่งในบทความนี้ได้นำเสนอวิธีการ รวมถึง โจทย์การแยกตัวประกอบ ไว้มากมาย น้องๆสามารถศึกษาเรียนรู้ได้ดวยตนเองโดยที่มีวิธีการแยกตัวประกอบ 2 วิธี ดังนี้ การแยกตัวประกอบ  โดยการคูณ  การแยกตัวประกอบ  โดยการหาร (หารสั้น)         ก่อนอื่นน้องๆมาทบทวน ความหมายของตัวประกอบและจำนวนเฉพาะ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1