จำนวนตรงข้ามและค่าสัมบูรณ์

จำนวนตรงข้ามและค่าสัมบูรณ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

       บทความนี้ ได้รวบรวมเนื้อหาเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์ ซึ่งเป็นพื้นฐานในการบวกลบจำนวนเต็ม โดยก่อนหน้านี้น้องๆได้เรียนเรื่องการเปรียบเทียบจำนวนเต็มมาแล้ว ต่อไปจะพูดถึงค่าสัมบูรณ์ของจำนวนเต็มใดๆ จะหาได้จากระยะที่จำนวนเต็มนั้นอยู่ห่างจาก 0 บนเส้นจำนวน แต่ก่อนอื่นเรามาทำความรู้จักกับจำนวนตรงข้ามกันก่อนนะคะ

จำนวนตรงข้าม

      “หากค่าของจำนวนที่อยู่ห่างจาก 0 เท่ากัน แต่อยู่ต่างทิศทางกันมีค่าเท่ากันหรือไม่” (ค่าไม่เท่ากัน)       

     ทราบหรือไม่ว่า จำนวนที่อยู่ทิศทางต่างกันแต่มีระยะห่างจาก 0 เท่ากัน คือ จำนวนอะไร (จำนวนตรงข้าม) ยกตัวอย่าง ดังนี้

เช่น      จำนวนตรงข้ามของ 4 เขียนแทนด้วย -4

   จำนวนตรงข้ามของ -4 เขียนแทนด้วย -(-4)

    และเนื่องจากจำนวนตรงข้ามของ -4 คือ 4

ดังนั้น  -(-4) = 4

สรุปได้ว่า

ถ้า a เป็นจำนวนใดๆ จำนวนตรงข้าม ของ a มีเพียงจำนวนเดียวและเขียนแทนด้วย  – a  เรียก – a ว่า จำนวนตรงข้าม ของ a

ตัวอย่างที่ 1  จงเขียนจำนวนตรงข้ามของจำนวนต่อไปนี้

  1.   -7 เป็นจำนวนตรงข้ามของ                        
  2.                     เป็นจำนวนตรงข้ามของ    15
  3.                     เป็นจำนวนตรงข้ามของ   -24
  4.   0 เป็นจำนวนตรงข้ามของ                       
  5.   32  เป็นจำนวนตรงข้ามของ                        

เฉลย

  1.   -7    เป็นจำนวนตรงข้ามของ    7
  2.   -15  เป็นจำนวนตรงข้ามของ    15
  3.   24   เป็นจำนวนตรงข้ามของ    -24
  4.   0     เป็นจำนวนตรงข้ามของ    0
  5.   32   เป็นจำนวนตรงข้ามของ    -32     

ค่าสัมบูรณ์

พิจารณาเส้นจำนวนต่อไปนี้ค่าสัมบูรณ์2

  1.    ระยะห่างของจำนวนเต็มบนเส้นจำนวนเท่ากันหรือไม่ (เท่ากัน)
  2.    -4 อยู่ห่างจาก 0 อยู่เท่าใด (4)
  3.    4 อยู่ห่างจาก 0 อยู่เท่าใด (4)
  4.    ระยะห่างของ -4 และ 4 อยู่ห่างจาก 0 เท่ากันหรือไม่ (เท่ากัน)

จะเห็นว่า 4 อยู่ห่างจาก 0 เป็นระยะ 4 หน่วย เรียกว่า  ค่าสัมบูรณ์ของ 4 เท่ากับ 4 เขียนแทนด้วย l4l = 4 

            -4 อยู่ห่างจาก 0 เป็นระยะ 4 หน่วย เรียกว่า  ค่าสัมบูรณ์ของ -4  เท่ากับ 4 เขียนแทนด้วย l-4l = 4 

สรุปได้ว่า

ค่าสัมบูรณ์ของจำนวนเต็มใดๆ คือ ระยะห่างของจำนวนเต็มนั้น กับ 0 (ศูนย์) บนเส้นจำนวน ดังนั้นค่าสัมบูรณ์ของจำนวนเต็มจึงเป็นบวกเสมอ โดยมีสัญลักษณ์ คือ l l  

ตัวอย่างที่ 2   3  อยู่ห่างจาก  0  เป็นระยะทางกี่หน่วย

ค่าสัมบูรณ์ 3

ตอบ 3  อยู่ห่างจาก  0  เป็นระยะทาง  3  หน่วย  กล่าวว่า  ค่าสัมบูรณ์ของ  3  เท่ากับ  3 หรือ l3l = 3 

ตัวอย่างที่ 3   -3  อยู่ห่างจาก  0  เป็นระยะทางกี่หน่วย

ค่าสัมบูรณ์ 4

ตอบ  -3  อยู่ห่างจาก 0  เป็นระยะทาง  3  หน่วย  กล่าวว่า ค่าสัมบูรณ์ของ -3 เท่ากับ  3  หรือ l-3l = 3 

ตัวอย่างที่ 4   4 อยู่ห่างจาก 0 เป็นระยะ 4 หน่วย

ค่าสัมบูรณ์5

ตอบ 4  อยู่ห่างจาก 0  เป็นระยะทาง  4  หน่วย  กล่าวว่า ค่าสัมบูรณ์ของ 4 เท่ากับ 4 หรือ l4l = 4 

สรุป     ค่าสัมบูรณ์ของจำนวนเต็มใดๆ จะหาได้จากระยะทางที่จำนวนเต็มนั้นอยู่ห่างจาก 0 บนเส้นจำนวน

เมื่อน้องๆเรียนรู้เรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์ จากตัวอย่างข้างต้น ทำให้สามารถหาจำนวนตรงข้ามและค่าสัมบูรณ์ของจำนวนเต็มใดๆได้  ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การบวกลบจำนวนเต็ม ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และบวกลบจำนวนเต็มได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ จำนวนตรงข้ามและค่าสัมบูรณ์

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา จำนวนตรงข้ามและค่าสัมบูรณ์  ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบายตัวอย่างและสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

มารยาทในการฟังที่ดี

มารยาทในการฟังที่ดีควรมีข้อปฏิบัติอย่างไร??

บทนำ สวัสดีน้อง ๆ ทุกคน วันนี้เราจะพาไปพบกับบทเรียนง่าย ๆ ที่สามารถนำไปใช้ในชีวิตประจำวันได้นั่นก็คือเรื่อง มารยาทในการฟังที่ควรปฏิบัติ ซึ่งเป็นเรื่องที่เด็ก ๆ ควรจะเรียนรู้ไว้ เนื่องจากเราต้องใช้ทักษะการฟัง ในทุก ๆ วัน แต่การจะฟังอย่างมีมารยาทนั้นเราจะต้องปฏิบัติอย่างไรบ้าง ถ้าน้อง ๆ คนไหนอยากรู้ เดี๋ยวเราไปดูบทเรียนเรื่องนี้พร้อม ๆ กันเลยดีกว่า     มารยาท

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์ ค่าของฟังก์ชันไซน์และโคไซน์ จะเกี่ยวข้องกับ θ พิกัดของ จุด (x, y) ซึ่งในบทความนี้จะอธิบายเกี่ยวกับ ความสัมพันธ์ระหว่าง x, y กับ θ จากบทความที่ผ่านมาเราได้รู้จักวงกลมหนึ่งหน่วยและการวัดความยาวส่วนโค้ง ในบทความนี้น้องๆจะได้รู้จักกับฟังก์ชันไซน์ (sine function) และฟังก์ชันโคไซน์ (cosine function) และวิธีการหาค่าของฟังก์ชันทั้งสอง Sine function =

การเก็บรวบรวมข้อมูล

การเก็บรวบรวมข้อมูล

การเก็บรวบรวมข้อมูล การเก็บรวบรวมข้อมูล เป็นขั้นตอนหนึ่งที่มีความสำคัญมากทางสถิติ เพื่อใช้ในการตัดสินใจได้อย่างถูกต้องและแม่นยำ โดยข้อมูลที่ได้มีหลากหลายรูปแบบ อาจจะเป็นตัวเลข ข้อความ หรือรูปภาพ ซึ่งเป็นข้อมูลที่ตอบสนองวัตถุประสงค์หรือเป็นเรื่องที่เราสนใจ โดยสามารถจำแนกข้อมูลได้ตามลักษณะและแหล่งที่มาของข้อมูล ได้แก่ จำแนกตามลักษณะของข้อมูล แบ่งได้เป็น 2 ประเภท คือ ข้อมูลเชิงปริมาณ (Quantitative Data) คือ ข้อมูลที่วัดค่าได้ แสดงเป็นตัวเลข ซึ่งสามารถนำมาใช้เปรียบเทียบกันได้โดยตรง เช่น จำนวนบุตรในครอบครัว,

ลำดับเรขาคณิต

ลำดับเรขาคณิต

ลำดับเรขาคณิต ลำดับเรขาคณิต คือ ลำดับที่มีจำนวนเพิ่มขึ้นหรือลดลงอย่างคงที่เป็นจำนวนเท่า ซึ่งจำนวนที่เพิ่มขึ้นหรือลดลงนั้นเรียกว่า อัตราส่วนร่วม เขียนแทนด้วย r โดยที่ r = พจน์ขวาหารด้วยพจน์ซ้าย การเขียนลำดับเราจะเขียนแทนด้วย    โดยที่ คือพจน์ทั่วไปหรือเรียกอีกอย่างว่า พจน์สุดท้ายนั่นเอง ตัวอย่างของลำดับเรขาคณิต 2, 4, 8, 16, 32, … จะได้ว่า 

ค่าสัมบูรณ์

ค่าสัมบูรณ์

ค่าสัมบูรณ์ ค่าสัมบูรณ์  หรือ Absolute คือค่าของระยะทางจากศูนย์ไปยังจุดที่เราสนใจ เช่น ระยะทางจากจุด 0 ถึง -5 มีระยะห่างเท่ากับ 5 เนื่องจากค่าสัมบูรณ์เอาไว้บอกระยะห่าง ดังนั้นค่าสัมบูรณ์จะมีค่าเป็นบวกหรือศูนย์เท่านั้น ไม่สามารถเป็นลบได้ นิยามของค่าสัมบูรณ์ ให้ a เป็นจำนวนจริงใดๆ จะได้ว่า และ   น้องๆอาจจะงงๆใช่ไหมคะ ลองมาดูตัวอย่างสักนิดนึงดีกว่าค่ะ เช่น เพราะ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1