สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก หรือ \Sigma  เรียกว่า ซิกมา ( Sigma ) เราใช้เพื่อลดรูปการบวกกันของตัวเลข เนื่องจากว่าบางทีเป็นการบวกของจำนวนตัวเลข 100 พจน์ ถ้ามานั่งเขียนทีละตัวก็คงจะเยอะไป เราจึงจะใช้เครื่องหมายซิกมามาใช้เพื่อประหยัดเวลาในการเขียนนั่นเอง

เช่น 1 + 2 + 3 + 4 +5  สามารถเขียนแทนด้วย สัญลักษณ์แทนการบวก

1 + 1 + 1 + 1 + 1 + 1  สามารถเขียนแทนด้วย \sum_{i=1}^{6}1

 

สูตรผลร่วม

สูตรเหล่านี้จะทำให้น้องๆประหยัดเวลาในการทำโจทย์มากๆ เนื่องจากไม่ต้องมานั่งแทน n ทีละตัว แล้วนำมาบวกกัน แต่สามารถใช้สูตรนี้ในการหาผลรวมได้เลย ดังนั้นจำสูตรเหล่านี้ไว้ดีๆนะคะ

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

\sum_{i=1}^{n}i^{3}=(\frac{n(n+1)}{6})^{2}

***สูตรข้างต้นใช้ได้กับการบวกตั้งแต่ 1 ถึง n เท่านั้น***

สมบัติที่ควรรู้เกี่ยวกับ \Sigma

สมบัติเหล่านี้จะช่วยให้น้องๆคิดเลขได้ง่ายขึ้นและประหยัดเวลาในการทำโจทย์แต่ละข้อได้เยอะมากๆ

ให้ a_n,b_n เป็นลำดับของจำนวนจริงใดๆ

1)\sum_{n=1}^{k}c=kc        โดยที่ c เป็นค่าคงที่ใดๆ

2) สัญลักษณ์แทนการบวก

3)สัญลักษณ์แทนการบวก

4)\sum ca_n=c\sum a_n  โดยที่ c เป็นจำนวนจริงใดๆ

 

ตัวอย่างเกี่ยวกับสัญลักษณ์การบวก

1)จงหาค่าของ \sum_{n=1}^{4}5

วิธีทำ จากโจทย์เราจะใช้สมบัติของซิกมาข้อที่ 1 เนื่องจาก 5 เป็นค่าคงที่ สัญลักษณ์แทนการบวก

ดังนั้นจะได้ว่า \sum_{n=1}^{4}5=4(5)=20

 

2) จงหาค่าของ \sum_{n=1}^{50}(-1)

วิธีทำ ใช้สมบัติข้อที่ 1 เนื่องจาก -1 เป็นค่าคงที่  \sum_{n=1}^{k}c=kc จะได้

สัญลักษณ์แทนการบวก

 

3) ถ้า a_1+a_2+a_3+a_4=35 จงหาค่า \sum_{n=1}^{4}5a_n

วิธีทำ จากโจทย์จะเห็นว่า สัญลักษณ์แทนการบวก 

พิจารณา \sum_{n=1}^{4}5a_n โดยใช้สมบัติข้อที่ 4 \sum ca_n=c\sum a_n

ดังนั้นจะได้ \sum_{n=1}^{4}5a_n=5\sum_{n=1}^{4}a_n และเนื่องจากเรารู้ว่า a_1+a_2+a_3+a_4=\sum_{n=1}^{4}a_n=35  

ดังนั้น \sum_{n=1}^{4}5a_n=5\sum_{n=1}^{4}a_n=5(35)=175

 

4)  ให้ \sum_{n=1}^{10}a_n=55, \sum_{n=1}^{10}b_n=27,\sum_{n=1}^{10}c_n=-22 จงหา \sum_{n=1}^{10}[5a_n-2b_n-6c_n]

วิธีทำ  เราจะพิจารณาสิ่งที่โจทย์ถามก่อน นั่นก็คือ \sum_{n=1}^{10}[5a_n-2b_n-6c_n] เราจะเห็นว่าในวงเล็บนั้นเป็นลำดับที่กำลังลบกันอยู่และจากสมบัติของซิกมาเราสามารถกระจายซิกมาเข้าไปได้(สมบัติข้อที่ 3) จะได้ว่า

สัญลักษณ์แทนการบวก

และจากสมบัติข้อที่ 4 เราสามารถดึงข้าคงที่ออกมาไว้ข้างนอกซิกมาได้ จะได้ว่า

\sum_{n=1}^{10}5a_n-\sum_{n=1}^{10}2b_n-\sum_{n=1}^{10}6c_n=5\sum_{n=1}^{10}a_n-2\sum_{n=1}^{10}b_n-6\sum_{n=1}^{10}c_n 

จะเห็นว่าเราสามารถตอบได้แล้ว เพราะเราสามารถเอาสิ่งที่โจทย์กำหนดให้มาแทนค่าลงไปได้แล้วจะได้เป็น

5\sum_{n=1}^{10}a_n-2\sum_{n=1}^{10}b_n-6\sum_{n=1}^{10}c_n=5(55)-2(27)-6(-22)=353

ดังนั้น \sum_{n=1}^{10}[5a_n-2b_n-6c_n]=353

 

5) จงหาผลบวกของ 1 + 2 + 3 + 4 +…+ 64

วิธีทำ จากโจทย์เป็นการบวกกันของจำนวนนับตั้งแต่ 1 ถึง 64  และเราสามารถเขียน 1 + 2 + 3 + 4 +…+ 64 ให้อยู่ในรูปของซิกมาได้ จะได้ว่า

1 + 2 + 3 + 4 +…+ 64 = \sum_{i=1}^{64}i 

และจากสูตร สัญลักษณ์แทนการบวก  ในโจทย์ข้อนี้ n = 64   ดังนั้นจะได้ว่า

สัญลักษณ์แทนการบวก

ดังนั้น 1 + 2 + 3 + 4 +…+ 64 = 2,080

 

6) จงหาผลบวกของ 1^2+2^2+3^2+...+10^2

วิธีทำ จากโจทย์เป็นการบวกของกำลังสองของจำนวนนับตั้งแต่ 1 ถึง 10 และเราสามารถเขียน 1^2+2^2+3^2+...+10^2 ให้อยู่ในรูปของซิกมาได้

จะได้เป็น

1^2+2^2+3^2+...+10^2=\sum_{i=1}^{10}i^2

และจากสูตร  สัญลักษณ์แทนการบวก เราจะเห็นว่า n = 10 ดังนั้นจะได้

สัญลักษณ์แทนการบวก

ดังนั้น 1^2+2^2+3^2+...+10^2 = 385

 

สรุป จากตัวอย่างข้างต้นจะเห็นว่าสมบัติของซิกมาและสูตรเกี่ยวกับผลบวกนั้นมีประโยชน์ในการแก้โจทย์อย่างมาก ทำให้ประหยัดเวลาในการคำนวณ และทำให้โจทย์ที่เหมือนจะยากนั้นง่ายขึ้นอีกด้วย ดังนั้นน้องๆอย่าลืมจำสูตรและสมบัติเหล่านี้นะคะ

 

วิดีโอเกี่ยวกับ สัญลักษณ์แทนการบวก

น้องๆสามารถเรียนรู้เพิ่มเติมเกี่ยวกับซิกมาและสมบัติของซิกมาได้จากคลิปด้านล่างนี้เลยค่ะ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง การวัดความยาวส่วนโค้ง ในบทความนี้จะเป็นการวัดความยาวของวงกลม 1 หน่วย วงกลมหนึ่งหน่วย คือวงกลมที่มีจุดศูนย์กลางที่จุดกำเนิด และมีรัศมียาว 1 หน่วย จากสูตรของเส้นรอบวง คือ 2r ดังนั้นวงกลมหนึ่งหน่วย จะมีเส้นรอบวงยาว 2 และครึ่งวงกลมยาว   จุดปลายส่วนโค้ง   จากรูป จะได้ว่าจุด P เป็นจุดปลายส่วนโค้ง   จากที่เราได้ทำความรู้จักกับวงกลมหนึ่งหน่วยและจุดปลายส่วนโค้งแล้ว

การใช้ตัวเชื่อม (Connective words): First,… Second,… Third,… Fourth,… Finally,…

 การใช้ตัวเชื่อม (Connective words) สวัสดีค่ะนักเรียน ม.2 ทุกคน วันนี้ครูมีเทคนิคที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วย  การใช้ตัวเชื่อม (connective words) ในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay คือเรียงความเพราะฉะนั้นจะยาวกว่า Paragraph ที่เป็นเพียงย่อหน้าหนึ่งเท่านั้นนั่นเองค่ะ 

อสมการค่าสัมบูรณ์

จากบทความที่ผ่านมา น้องๆได้ศึกษาเรื่องค่าสัมบูรณ์และการแก้อสมการไปแล้ว บทความนี้จะเป็นการเอาเนื้อหาของอสมการและค่าสัมบูรณ์มาปรับใช้ นั่นก็คือ เราจะแก้อสมการของค่าสัมบูรณ์นั่นเองค่ะ เรื่องอสมการค่าสัมบูรณ์น้องๆจะได้เจอในข้อสอบ O-Net แต่น้องๆไม่ต้องกังวลค่ะ ถ้าน้องๆเข้าใจหลักการและสมบัติของค่าสัมบูรณ์และอสมการน้องๆจะสามารถทำข้อสอบได้แน่นอน

ขุนช้างขุนแผน ตอน กำเนิดพลายงาม ถอดคำประพันธ์และเรียนรู้คุณค่าของวรรณคดี

จากที่บทเรียนคราวก่อนเราได้รู้ความเป็นมาและเรื่องย่อของตอนที่สำคัญอีกตอนหนึ่งของเรื่องอย่างตอน กำเนิดพลายงาม กันไปแล้ว บทเรียนในวันนี้จะพาน้อง ๆ ไปเจาะลึกตัวบทที่น่าสนใจเพื่อถอดคำประพันธ์พร้อมทั้งศึกษาคุณค่าในเรื่อง น้อง ๆ จะได้รู้พร้อมกันว่าเหตุใดวรรณคดีเรื่อง ขุนช้างขุนแผน ถึงมีชื่อเสียงเป็นที่รู้จักแพร่หลายมาตั้งแต่อดีตจนถึงปัจจุบัน ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   ตัวบท ขุนช้างขุนแผน ตอน กำเนิดพลายงาม     ถอดคำประพันธ์ : เป็นคำสอนของนางวันทองที่ได้สอนพลายงามก่อนที่จะต้องจำใจส่งลูกไปอยู่กับย่าที่กาญจนบุรีว่าเกิดเป็นผู้ชายต้องลายมือสวย โตขึ้นจะได้รับราชการก่อนจะพาพลายงามมาส่งด้วยความรู้สึกที่เหมือนใจสลาย    

คำเชื่อม Conjunction

การใช้คำสันธาน(Conjunctions)

สวัสดีค่ะนักเรียนชั้นม.3 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “การใช้คำสันธาน(Conjunctions)“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด คำสันธาน(Conjunctions)คืออะไร   คำสันธาน (Conjunctions) คือ คำที่ใช้เชื่อมระหว่างประโยคต่อประโยค คำต่อคำ หรือระหว่างกริยาต่อกริยา และอื่นๆ เช่น for, and, or, nor, so, because, since ดังตัวอย่างด้านล่างเลยจ้า ตัวอย่างเช่น เชื่อมนามกับนาม

ที่มาของขุนช้างขุนแผน ตอน กำเนิดพลายงาม

​ขุนช้างขุนแผนเป็นวรรณกรรมที่เชื่อว่ามีเค้าเรื่องจริงในสมัยอยุธยา มีมากมายหลายตอน แต่ตอนที่ถูกนำมาให้เด็กได้เรียนกันมีด้วยกันสองตอนคือกำเนิดพลายงามและขุนช้างถวายฎีกา สำหรับตอนที่น้อง ๆ จะได้เรียนรู้กันในวันนี้คือตอน กำเนิดพลายงาม ซึ่งคือว่าเป็นตอนที่สำคัญอย่างมากเพราะเป็นเหมือนจุดเริ่มต้นของเรื่องราวทั้งหมดของเรื่อง ตอนนี้จะมีความเป็นมา เรื่องย่อ และมีความดีเด่นอย่างไรบ้าง ถ้าพร้อมแล้วเราไปดูพร้อมกันเลยค่ะ   ความเป็นมา   ขุนช้างขุนแผนเป็นวรรณคดีที่มีมาอย่างยาวนาน แต่ในสมัยรัชกาลที่ 2 พระบาทสมเด็จพระพุทธเลิศหล้านภาลัย โปรดเกล้าฯ ให้ชำระเสภาขุนช้างขุนแผน ได้ทรงประชุมกวีเอกสมัยนั้น ช่วยกันแต่งคนละตอนสองตอน สุนทรภู่ก็ได้รับมอบหมายให้ร่วมแต่งด้วย และท่านคงต้องแต่งอย่างสุดฝีมือทำให้ตอน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1