ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย

ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ

หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ

 

ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์ เรียกว่า โคเซค  และฟังก์ชันที่เป็นส่วนกลับของโคไซน์ เรียกว่า เซค

เมื่อกำหนดให้ θ เป็นจำนวนจริง จะได้ว่า

cosecθ = \inline \frac{1}{sin\theta } โดยที่ sinθ ≠ 0

secθ = \inline \frac{1}{cos\theta } โดยที่ cosθ ≠ 0

หลักการจำคือ ให้จำแค่ secθ >>> จำว่า cos sec ( อ่านว่า คอสเซค) ซึ่งหมายถึงว่า secθ เป็นส่วนกลับของ cosθ นั่นเอง

ฟังก์ชันตรีโกณมิติอื่นๆ

ให้ θ เป็นจำนวนจริง

tanθ = \inline \frac{sin\theta }{cos\theta } เมื่อ cosθ ≠ 0

cotθ = \inline \frac{cos\theta }{sin\theta } เมื่อ sinθ ≠ 0 หรือจะบอกว่า cotθ = \inline \frac{1}{tan\theta } ก็ได้

โคฟังก์ชันของฟังก์ชันตรีโกณมิติ

โคฟังก์ชัน (Co-function) คือฟังก์ชันที่จับคู่กัน ได้แก่

sin เป็นโคฟังก์ชันของ cos

sec เป็นโคฟังก์ชันของ cosec

tan เป็นโคฟังก์ชันของ cot

  • ฟังก์ชันตรีโกณมิติที่เขียนอยู่ในรูป ( \frac{\pi }{2} – θ ) สามารถใช้หลักของโคฟังก์ชันได้ดังนี้

sin( \frac{\pi }{2} – θ ) = cosθ               cosec( \frac{\pi }{2} – θ ) = secθ

cos( \frac{\pi }{2} – θ ) = sinθ               sec( \frac{\pi }{2} – θ ) = cosecθ

tan( \frac{\pi }{2} – θ ) = cotθ               cot( \frac{\pi }{2} – θ ) = tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนอยู่ในรูป ( \frac{\pi }{2} + θ )

sin( \frac{\pi }{2} + θ ) = cosθ              cosec( \frac{\pi }{2} + θ ) = secθ

cos( \frac{\pi }{2} + θ ) = -sinθ            sec( \frac{\pi }{2} + θ ) = -cosecθ

tan( \frac{\pi }{2} + θ ) = -cotθ            cot( \frac{\pi }{2} + θ ) = -tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนในรูป ( \frac{3\pi }{2} – θ )

sin( \frac{3\pi }{2} – θ ) = -cosθ               cosec( \frac{3\pi }{2} – θ ) = -secθ

cos( \frac{3\pi }{2} – θ ) = -sinθ               sec( \frac{3\pi }{2} – θ ) = -cosecθ

tan( \frac{3\pi }{2} – θ ) = cotθ                cot( \frac{3\pi }{2} – θ ) = tanθ

  • ฟังก์ชันตรีโกณมิติที่เขียนในรูป ( \frac{3\pi }{2} + θ )

sin( \frac{3\pi }{2} + θ ) = -cosθ              cosec( \frac{3\pi }{2} + θ ) = -secθ

cos( \frac{3\pi }{2} + θ ) = sinθ               sec( \frac{3\pi }{2} + θ ) = cosecθ

tan( \frac{3\pi }{2} + θ ) = -cotθ             cot( \frac{3\pi }{2} + θ ) = -tanθ

น้องๆเห็นแล้วอาจจะคิดว่ามันเยอะแต่เราสามารถเลือกจำแค่บางตัวได้ตัวที่พี่อยากให้จำคือ sin และ cos

เช่น เราต้องการหา

tan( \frac{\pi }{2} + θ ) ซึ่งสามารถเขียนได้อีกแบบคือ \inline \frac{sin\left ( \frac{\pi }{2} +\theta \right )}{cos\left ( \frac{\pi }{2} +\theta \right )}

แยกหา sin( \frac{\pi }{2} + θ ) = cosθ และ cos( \frac{\pi }{2} + θ ) = -sinθ

ดังนั้นจะได้ \inline \frac{cos\theta }{-sin\theta } ซึ่งก็คือ -cotθ นั่นเอง

ตัวอย่างการหาค่าโคฟังก์ชัน

1) sec( -\frac{4\pi }{5} )

วิธีทำ  เรารู้ว่า โคฟังก์ชันของ sec คือ cosec

พิจารณา sec( -\frac{4\pi }{5} )  ตอนนี้เราได้ θ = -\frac{4\pi }{5}

จาก cosec( \frac{\pi }{2} – θ ) = secθ

ดังนั้น sec( -\frac{4\pi }{5} ) = cosec( \frac{\pi }{2}-  ( -\frac{4\pi }{5} )) = cosec( \frac{13\pi }{10} )

เราสามารถหาโคฟังก์ชันได้อีกวิธีหนึ่ง

นั่นก็คือเราจะพิจารณาว่า -\frac{4\pi }{5} มาจากอะไร????

พิจารณา \frac{\pi }{2}- \frac{13\pi }{10} = -\frac{4\pi }{5}

จะได้ว่า sec( -\frac{4\pi }{5} ) = sec( \frac{\pi }{2}- \frac{13\pi }{10} ) = cosec( \frac{13\pi }{10} )

การหาค่าฟังก์ชันตรีโกณมิติอื่นๆ

การหาค่าฟังก์ชันตรีโกนณ์เหล่านี้ไม่ยากเลย ยิ่งถ้าน้องๆมีพื้นฐานการหาค่าฟังก์ชันไซน์กับโคไซน์แล้วยิ่งง่ายมากๆเลย

เช่น ต้องการหา secθ เราก็แค่หา cosθ มาก่อน จากนั้นนำค่าที่ได้ไปเป็นตัวหารเราก็จะได้ค่า secθ มาแล้ว

ตัวอย่าง

1) หาค่า sec( \frac{4\pi }{3} ) + cosec( \frac{7\pi }{6} ) – 3cot( \frac{4\pi }{3} )

  • พิจารณา sec( \frac{4\pi }{3} ) จาก secθ = \inline \frac{1}{cos\theta } ดังนั้น เราจะมาหาค่าของ cos( \frac{4\pi }{3} )

จากกฎมือซ้าย จะได้ว่า cos( \frac{\pi }{3} ) = \frac{1}{2}

พิจารณา \frac{4\pi }{3} อยู่ควอดรันต์ที่ 3 ซึ่งค่า x = cosθ ต้องเป็นจำนวนลบ

ดังนั้น cos( \frac{4\pi }{3} ) = -\frac{1}{2} นั่นคือ sec( \frac{4\pi }{3} ) = -2

  • พิจารณา cosec( \frac{7\pi }{6} ) จาก cosec( \frac{7\pi }{6} ) = \inline \frac{1}{sin\left ( \frac{7\pi }{6} \right )}

ดังนั้นเราจะมาหาค่าของ sin( \frac{7\pi }{6} ) ซึ่ง \frac{7\pi }{6} อยู่ควอดรันต์ที่ 3 ซึ่งค่า sin จะเป็นลบ และจาก sin( \frac{\pi }{6} ) = \frac{1}{2}

ดังนั้น sin( \frac{7\pi }{6} ) = -\frac{1}{2}  นั่นคือ cosec( \frac{7\pi }{6} ) = -2

  • พิจารณา cot( \frac{4\pi }{3} ) = \inline \frac{cos\left ( \frac{4\pi }{3} \right )}{sin\left ( \frac{4\pi }{3} \right )}

เนื่องจากเรารู้ว่า cos( \frac{4\pi }{3} ) = -\frac{1}{2} 

ดังนั้นเราจะมาพิจารณา sin( \frac{4\pi }{3} ) โดย \frac{4\pi }{3} อยู่ควอดรันต์ที่ 3 ค่า sin เป็นลบ และจากกฎมือซ้าย sin( \frac{\pi }{3}) = \frac{\sqrt{3}}{2}

ดังนั้น sin( \frac{4\pi }{3} ) = -\frac{\sqrt{3}}{2}

จะได้ว่า cot( \frac{4\pi }{3} ) = \inline \frac{cos\left ( \frac{4\pi }{3} \right )}{sin\left ( \frac{4\pi }{3} \right )} = \frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}

ดังนั้น sec( \frac{4\pi }{3} ) + cosec( \frac{7\pi }{6} ) – 3cot( \frac{4\pi }{3} ) = -2 + (-2) – 3( \frac{1}{\sqrt{3}} ) = -4-\frac{3}{\sqrt{3}}

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ There is และ There are ในประโยคคำถาม

สวัสดีค่ะนักเรียนชั้น ม.2 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “การใช้ There is There are ในประโยคคำถาม ” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ   There is/There are คืออะไร   There is และ There are แปลว่า

การพูดอภิปราย

การพูดอภิปรายอย่างง่าย ทำได้ไม่ยาก

การพูดอภิปราย เป็นแบบการพูดซึ่งมีลักษณะคล้ายการสนทนาทั่วไป แต่ก็มีจุดที่แตกต่างกันอยู่ น้อง ๆ ทราบไหมคะว่าคืออะไร แล้วสรุปว่าการพูดอภิปรายคืออะไร มีหลักในการพูดอย่างไรได้บ้าง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทำความรู้จักและฝึกพูดให้คล่อง เพื่อที่เมื่อถึงเวลาอภิปราย จะได้ผ่านกันแบบฉลุยไร้กังวล ถ้าอยากเรียนรู้แล้วล่ะก็ ไปดูพร้อม ๆ กันเลยค่ะ   ความหมายของการพูดอภิปราย   การพูดอภิปราย หมายถึง การพูดเพื่อแสดงความคิดเห็น แลกเปลี่ยนความรู้เกี่ยวกับเรื่องใดเรื่องหนึ่ง เพื่อใช้ในการแก้ปัญหา

passive modals

Passive Modals: It can be done!

สวัสดีน้องๆ ม. 5 ทุกคนนะครับ วันนี้เราจะมาทำความเข้าใจเรื่อง Passive Voice ในกริยาจำพวก Modals กันครับ ถ้าพร้อมแล้วเราลองไปดูกันเลย

เมื่อฉันโดนงูรัด!: เรียนรู้การใช้ Passive Voice แบบผ่อน ‘คลายย’

น้องๆ ทราบกันมั้ยว่าในไวยากรณ์ภาษาอังกฤษจะมีสิ่งที่เรียกว่า ‘Voice’ ถ้ายังไม่ทราบหรือเคยได้ยินแต่ยังไม่แน่ใจว่าคืออะไรวันนี้เราจะมาเรียนรู้เรื่อง Voice ในภาษาอังกฤษแบบเข้าใจง่ายๆ กันครับ

เสียงสระในภาษาไทย

เสียงในภาษาไทยมีทั้งหมด 3  เสียงคือพยัญชนะ สระ และวรรณยุกต์ จากที่เราได้ทำความเข้าใจในเรื่องเสียงพยัญชนะกันไปแล้ว วันนี้เราจะมาเรียนรู้อีกเสียงหนึ่งที่มีความสำคัญไม่แพ้กันก็คือเรื่องเสียงสระนั่นเองค่ะ เสียงสระจะมีกี่ชนิด แบ่งเป็นชนิดใดบ้าง ไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ     เสียงสระ เสียงสระเป็นเสียงที่เกิดจากลมภายในปอด เปล่งออกมาโดยใช้การเคลื่อนไหวของลิ้นและริมฝีปาก เสียงที่ได้จะแบ่งออกได้ดังนี้ค่ะ สระเดี่ยว สระเดี่ยวหรือสระแท้ มีทั้งหมด 18 เสียง เสียงสั้นและเสียงยาวจับกันได้ 9

อิเหนา ตอน ศึกกะหมังกุหนิง

อิเหนา ตอน ศึกกะหมังกุหนิง เรียนรู้ตัวบทและคุณค่าในเรื่อง

จากที่ได้เรียนรู้ประวัติความเป็นมาและเรื่องย่อของอิเหนากันไปแล้ว บทเรียนภาษาไทยในวันนี้เราจะยังอยู่กับอิเหนากันนะคะ เพราะนอกจากที่มาและเรื่องย่อแล้ว วรรณคดีเรื่องนี้ก็ยังมีเรื่องอื่นให้น่าสนใจและน่าศึกษาเช่นกัน ถ้าพร้อมแล้วเราไปศึกษาตัวบทและคุณค่าที่แฝงอยู่ในเรื่อง อิเหนา ตอน ศึกกะหมังกุหนิง กันเลยค่ะ   ตัวบทเด่น ๆ ในอิเหนา ตอน ศึกกะหมังกุหนิง   บทที่ 1    ถอดความ เป็นตอนที่ท้าวกะหมังกุหนิงให้ราชทูตนำสาส์นไปมอบให้ท้าวดาหาเพื่อสู่ขอบุษบาให้วิหยาสะกำ โดยบทนี้เป็นเนื้อหาส่วนหนึ่งที่ท้าวกะหมังกุหนิงเขียนถึงท้าวดาหา โดยเปรียบว่าตนเป็นเหมือนรองเท้าที่จะอยู่เคียงกับท้าวดาหา ดังนั้นจึงจะขอสู่ขอพระธิดาให้กับวิหยาสะกำ  

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1