โดเมนของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

โดเมนของความสัมพันธ์

โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย D_r

กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย D_r คือสมาชิกตัวหน้า

เช่น r_1 = {(2, 2), (3, 4), (8, 9)}

จะได้ว่า D_{r_1} = {2, 3, 8}

กรณีที่ r เขียนในรูปแบบที่บอกเงื่อนไข เราอาจจะสามารถนำมาเขียนแบบแจกแจงสมาชิกได้

เช่น ให้ A = {1, 2, 3} และ r_2 = {(x, y) ∈ A × A : y = 2x}

x = 1 ; y = 2(1) = 2

x = 2 ; y = 2(2) = 4

x = 3 ; y = 2(3) = 6

ได้คู่อันดับ ดังนี้ (1, 2), (2, 4), (3, 6) เนื่องจาก (x, y) ต้องเป็นสมาชิกใน A × A

และจาก (1, 2) ∈ A × A

(2, 4) ∉ A × A

(3, 6) ∉ A × A

ดังนั้น สามารถเขียน r ในรูปแจกแจงสมาชิกได้ดังนี้  r_2 = {(1, 2)}

สรุปได้ว่า D_{r_2} = {1}

แต่บางกรณีเราไม่สามารถแจกแจงสมาชิกได้ เช่น ให้ x, y เป็นจำนวนจริงใดๆ และ r_3 = {(x, y) : y = \frac{1}{x}}

โดเมนของ r_3 คือ ค่า x ทุกตัวที่เป็นไปได้ ที่ทำให้ y เป็นจำนวนจริง

การที่จะหา x ที่ทำให้ y เป็นจำนวนจริงนั้น จำนวนของ x ที่เป็นไปได้มีเยอะมากๆๆๆๆ หายังไงก็ไม่หมดแน่นอน เราจึงต้องเปลี่ยนมา x ที่ทำให้ y ไม่เป็นจำนวนจริง ถ้าไม่มี เราสามารถตอบได้เลยว่า โดเมนคือ จำนวนจริง

แต่! ในตัวอย่างนี้เหมือนจะมี x ที่ทำให้ y ไม่เป็นจำนวนจริง นั่นคือ x = 0 จะได้ว่า y = \frac{1}{0} ซึ่ง ไม่นิยาม

ดังนั้น โดเมนคือ จำนวนจริงทั้งหมดยกเว้น 0 เขียนได้เป็น D_{r_3} = \mathbb{R} – {0}

 

ตัวอย่างการหาโดเมนของความสัมพันธ์

1.) ให้ A = {1, 2, 3} และ r = {(x, y) : y = 2x , x ∈ A}

จาก x เป็นสมาชิกใน A 

x = 1 ; y = 2(1) = 2

x = 2 ; y = 4

x = 3 ; y = 6

r = {(1, 2), (2, 4), (3, 6)}

ดังนั้น D_r = {1, 2, 3} = A

 

2.) ให้ r = {(x, y) ∈ \mathbb{R}\times\mathbb{R} : y = x²}

เงื่อนไขของ (x, y) ∈ \mathbb{R}\times\mathbb{R} 

พิจารณากราฟ y = x²

โดเมนของความสัมพันธ์

จะเห็นว่าค่ากราฟนั้นกางออกเรื่อยๆ  ค่า x เป็นไปได้เรื่อยๆไม่สิ้นสุด จาก โดเมนของความสัมพันธืคือ สมาชิกตัวหน้าของความสัมพันธ์ใน r นั่นคือ x นั่นเอง

ดังนั้น D_r = \mathbb{R}

 

3.) ให้ r = {(x, y) : y = \frac{1}{x-3}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของ y = \frac{1}{x-3} จะได้

โดเมนของความสัมพันธ์

จะเห็นได้ว่า กราฟในรูปนั้น x เป็นอะไรก็ได้ ยกเว้น 3 เพราะ  เมื่อลองลากเส้น x = 3 แล้ว กราฟของ y = \frac{1}{x-3} นั้นไม่ตัดกับเส้น x = 3 เลย

หรือเราลองสังเกตจากสมการก็ได้ว่า ถ้า x = 3 จำทำให้ตัวส่วนเป็น 0 ซึ่งหาค่าไม่ได้ (ไม่นิยาม) ดังนั้น x อยู่ใน R ยกเว้น 3

และโดเมนก็คือ ค่า x เพราะ x เป็นสมาชิกตัวหน้าของความสัมพันธ์ r 

ดังนั้น D_r = R – {3} หรือ D_r = {x : x ∈ R และ x ≠ 3}

 

4.) ให้ r = {(x, y) : y = \sqrt{x}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของสมการ y = \sqrt{x}

โดเมนของความสัมพันธ์

จะเห็นว่ากราฟที่ได้ x มีค่าตั้งแต่ 0 ไปเรื่อยๆ ไม่สิ้นสุด นั่นคือ x เป็นจำนวนจริงที่มากกว่าเท่ากับ 0

และโดเมนก็คือ ค่า x เพราะ x เป็นสมาชิกตัวหน้าของความสัมพันธ์ r 

ดังนั้น D_r = {x : x เป็นจำนวนจริง และ x ≥ 0}

 

วิดีโอ โดเมนของความสัมพันธ์

 

 

เนื้อหาที่เกี่ยวข้องกับโดเมนของความสัมพันธ์

 

  1. กราฟของความสัมพันธ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โดเมนของความสัมพันธ์

โดเมนของความสัมพันธ์ โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหน้า เช่น = {(2, 2), (3, 4), (8, 9)} จะได้ว่า  = {2, 3, 8}

ความน่าจะเป็น

ความน่าจะเป็น

บทความนี้จะแนะนำให้รู้จักกับ ความน่าจะเป็น ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ รวมถึงคำที่เกี่ยวข้องกับความน่าจะเป็น เช่นการทดลองสุ่ม ปริภูมิตัวอย่าง และเหตุการณ์ ดังต่อไปนี้ ความน่าจะเป็น ความน่าจะเป็น (Probability)  เป็นจำนวนที่ใช้เพื่อบอกโอกาสที่เหตุการณ์หนึ่ง ๆ จะเกิดขึ้น ซึ่งมี 3 ลักษณะ คือ ไม่เกิดขึ้นอย่างแน่นอนจะมีค่าความน่าจะเป็นเท่ากับ 0 อาจจะเกิดขึ้นหรือไม่ก็ได้ จะมีค่าความน่าจะเป็นอยู่ระหว่าง 0 กับ 1

กาพย์พระไชยสุริยา เรียนรู้ความเป็นมาของแบบเรียนภาษาไทยอันทรงคุณค่า

กาพย์พระไชยสุริยา   กาพย์พระไชยสุริยาเป็นอีกหนึ่งบทเรียนที่น้อง ๆ ทุกคนจะได้ศึกษากัน แต่รู้ไหมคะว่าคำกาพย์ที่แต่งโดยสุนทรภู่นี้เป็นกาพย์แบบไหน มีประวัติความเป็นมาอย่างไร เหตุใดถึงมาอยู่ในแบบเรียนวิชาภาษาไทยได้ วันนี้เราจะพาน้อง ๆ ไปทำความรู้จักกับประวัติความเป็นมาของกาพย์พระไชยสุริยา รวมถึงเรื่องลักษณะคำประพันธ์และสรุปเนื้อเรื่องโดยย่อ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของกาพย์พระไชยสุริยา     กาพย์พระไชยสุริยา เป็นวรรณคดีคำกาพย์ที่สุนทรภู่แต่ง มีความยาว 1 เล่มสมุดไทย นักวรรณคดีและนักวิชาการสันนิษฐานว่าสุนทรภู่แต่งขึ้นขณะบวชอยู่ที่วัดเทพธิดาระหว่าง

ประวัติความเป็นมาของวรรณคดีคำสอน เรื่องสุภาษิตพระร่วง

สุภาษิตพระร่วง   คนไทยนิยมใช้สุภาษิตสั่งสอนลูกหลานกันมาตั้งแต่สมัยก่อนจนถึงปัจจุบัน เชื่อว่าน้อง ๆ หลายคนก็คงจะเคยได้ยินสุภาษิตกันมาไม่มากก็น้อย ดังนั้นบทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ประวัติความเป็นมาของสุภาษิตพระร่วง วรรณคดีอันทรงคุณค่าและเป็นวรรณคดีเล่มแรกที่แต่งคำประพันธ์เป็นร่ายโบราณแบบร่ายสุภาพ ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของสุภาษิตพระร่วง     สุภาษิตพระร่วง เป็นวรรณคดีคำสอนที่ทรงคุณค่าที่มีมาอย่างยาวนาน มีชื่อเรียกอีกอย่างหนึ่งว่า สุภาษิตบัณฑิตพระร่วง คำว่า พระร่วง ทำให้คนเข้าใจว่าอาจจะเป็นคำสอนของกษัตริย์สักคนที่มีนามว่า พระร่วง

เสียงสระในภาษาไทย

เสียงในภาษาไทยมีทั้งหมด 3  เสียงคือพยัญชนะ สระ และวรรณยุกต์ จากที่เราได้ทำความเข้าใจในเรื่องเสียงพยัญชนะกันไปแล้ว วันนี้เราจะมาเรียนรู้อีกเสียงหนึ่งที่มีความสำคัญไม่แพ้กันก็คือเรื่องเสียงสระนั่นเองค่ะ เสียงสระจะมีกี่ชนิด แบ่งเป็นชนิดใดบ้าง ไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ     เสียงสระ เสียงสระเป็นเสียงที่เกิดจากลมภายในปอด เปล่งออกมาโดยใช้การเคลื่อนไหวของลิ้นและริมฝีปาก เสียงที่ได้จะแบ่งออกได้ดังนี้ค่ะ สระเดี่ยว สระเดี่ยวหรือสระแท้ มีทั้งหมด 18 เสียง เสียงสั้นและเสียงยาวจับกันได้ 9

Life is Simple: ทำความรู้จัก Present Simple Tense

เรื่อง Tense (กาล) ในภาษาอังกฤษเป็นเรื่องที่สำคัญมากๆ อีกเรื่องหนึ่ง และ Tense ที่เป็นพื้นฐานสุดๆ และน้องๆ จะพบเจอบ่อยที่สุดก็คือ Present Simple นั่นเอง วันนี้เราจะมาปูพื้นฐานและทบทวนความรู้เรื่องนี้กันครับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1