อสมการ

จากบทความที่ผ่านมาได้พูดถึงเรื่องช่วงของจำนวนจริงไปแล้ว บทความนี้เราจะนำความรู้เกี่ยวกับช่วงของจำนวนจริงมาใช้ในการแก้อสมการเพื่อหาคำตอบกันนะคะ ถ้าน้องๆได้อ่านบทความนี้แล้วรับรองว่าพร้อมทำข้อสอบแน่นอนค่ะ
อสมการ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

อสมการ

อสมการ คือการไม่เท่ากัน ซึ่งการไม่เท่ากันนั้น สามารถเป็นไปได้ทั้ง มากกว่า, น้อยกว่า , มากกว่าหรือเท่ากับ และน้อยกว่าหรือเท่ากับ เนื้อหาในบทความนี้จะเกี่ยวข้องกับเรื่องช่วงของจำนวนจริงด้วย น้องๆสามารถดูบทความเรื่องช่วงของจำนวนจริงเพิ่มเติมได้ที่ >>>ช่วงของจำนวนจริง<<<

การแก้อสมการจะทำคล้ายๆกับสมการ มีเป้าหมายเดียวกันก็คือ หาค่าตัวแปรตัวแปรหนึ่งสมมติให้เป็น x แต่คำตอบจะต่างกับสมการ การแก้สมการหาค่า x เราจะได้ค่า x มา โดยระบุชัดเจนเลยว่า x มีค่าเท่ากับเท่านี้ แต่สำหรับอสมการคำตอบจะเป็นช่วง เช่น แก้อสมการแล้วได้คำตอบว่า x > 3 แสดงว่า x ที่มากกว่า 3 นั้นเป็นคำตอบของอสมการทั้งหมดเลย

สมบัติที่ควรรู้ของอสมการ

ให้ a, b เป็นจำนวนจริงใดๆ

1.) ถ้า a > b แล้ว -a < -b

คำอธิบายเพิ่มเติม ถ้า เรามีจำนวนจริงที่ 2 ตัว ที่ไม่เท่ากัน เมื่อคูณด้วยจำนวนจริงลบเข้าไปทั้งสองฝั่งของอสมการ จะทำให้เครื่องหมายของอสมการเปลี่ยนไป

ตัวอย่าง  2 < 3  สมมติคูณด้วย -3 ทั้งสองข้างของอสมการ จะได้ว่า 2(-3) > 3(-3)  ⇒ -6 > -9

เห็นได้ชัดเลยว่า เมื่อคูณลบไปแล้ว เครื่องหมายจะเปลี่ยน

 

ตัวอย่างการแก้อสมการ

 

1.) จงหาค่า x เมื่อ x + 5 > 2x -2  พร้อมกับวาดเส้นจำนวน

อสมการ

2.) จงหาค่า x เมื่อ x² -3 > 1 พร้อมกับวาดเส้นจำนวน

กรณีที่มีสองวงเล็บที่มากกว่า 0

เราจะเห็นว่าเส้นจำนวนแบ่งออกเป็น 3 ช่วง ถ้าเจอแบบนี้ให้น้องๆ

1.)ทดเครื่องหมายบวกไว้ที่ช่องขวาสุด ช่องถัดไปเป็นลบสลับแบบนี้ไปเรื่อยๆ (เริ่มจากขวาเสมอ) 

2.)พิจารณาเครื่องหมายของอสมการ จะเห็นว่าเป็นเครื่องหมายมากกว่า ดังนั้น ต้องลากเส้นไปทางเครื่องหมายบวกดังรูป

กลับกันถ้าเป็นกรณีน้อยกว่าให้ลากเส้นไปทางเครื่องหมายลบ ดังรูปในข้อ 4

3.) นำค่า x ของทั้งสองช่วงมา ยูเนียนกัน 

 

3.) จงหาค่า x เมื่อ x² + 3x – 18 ≥ 0 พร้อมกับวาดเส้นจำนวน

4.) (O-Net) กำหนดให้ I แทนเซตของจำนวนเต็ม และ A = {x : x ∈ I และ  2x² – 3x – 14 ≤ 0}

ผลรวมของสมาชิกในเซต A เท่ากับเท่าใด

อสมการ

 

 

วีดิโอ อสมการ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม เช่น {(1, a), (2, b), (3, a), (4, c)}  จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง

บวก ลบ ทศนิยมอย่างไรให้ตรงหลัก

การบวกและการลบทศนิยมมีหลักการเดียวกันกับการบวกและการลบจำนวนนับคือ ต้องบวกและลบให้ตรงหลัก ดังนั้นหัวใจสำคัญของเรื่องนี้คือต้องเขียนตำแหน่งของตัวเลขให้ตรงหลักไม่ว่าจะเป็นหน้าจุดทศนิยมและหลัดจุดทศนิยม บทความมนี้จะมาบอกหลักการตั้งบวกและตั้งลบให้ถูกวิธี และยกตัวอย่างการบวกการลบทศนิยมที่ทำให้น้อง ๆเห็นภาพและเข้าใจได้อย่างดี

ตัวอย่างโจทย์ปัญหา + – × ÷ เศษส่วนและจำนวนคละ

หัวใจสำคัญของการทำโจทย์ปัญหาก็คือการวิเคราะห์ประโยคที่เป็นตัวหนังสือออกมาเป็นสัญลักษณ์ทางคณิตศาสตร์หรือเรียกสั้นๆว่า “การตีโจทย์”ถ้าเราวิเคราะห์ถูกต้องเราก็สามารถแสดงวิธีคิดได้ออกมาอย่างถูกต้องคำตอบที่ได้ก็จะถูกต้องตามมาด้วย ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้คือการฝึกวิเคราะห์โจทย์ปัญหาและการแสดงวิธีทำ รับรองว่าถ้าอ่านบทความนี้แล้วนำไปใช้จะได้คำตอบที่ถูกทุกข้ออย่างแน่นอน

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นกับการตัดสินใจ สำหรับบางเหตุการณ์ความรู้เรื่องความน่าจะเป็นเพียงอย่างเดียว  อาจไม่เพียงพอที่จะช่วยตัดสินใจได้  จำเป็นจะต้องหาองค์ประกอบอื่นมาช่วยในการตัดสินใจด้วย  นั่นคือผลตอบแทนของการเกิดเหตุการณ์นั้น ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง ความน่าจะเป็นของเหตุการณ์ สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ ความน่าจะเป็นของเหตุการณ์ ⇐⇐ ผลตอบแทนของเหตุการณ์อาจหมายถึง ผลตอบแทนที่ได้หรือผลตอบแทนที่เสีย  เช่น  ในการเล่นแทงหัวก้อย  ถ้าออกหัว พีชจะได้เงิน 2 บาท และถ้าออกก้อย พอลจะต้องเสียเงิน 3 บาท เงิน 2 บาทที่พอลจะได้รับเป็นผลตอบแทนที่ได้ 

งานอดิเรก (Hobbies) ในยุคปัจจุบัน

  ในปัจจุบันงานอดิเรก (Hobbies) นอกจากจะเป็นสิ่งที่ทำให้เราสนุกแล้วยังสามารถเพิ่มพูนทักษะใหม่ๆ  ให้เราได้อีกด้วย  หากมีใครก็ตามถามว่า what do you like to do in your free time? คุณชอบทำอะไรในเวลาว่าง ครูเชื่อว่านักเรียนจะต้องมีหลายคำตอบ เพราะปัจจุบันมีหลายสิ่งหลายอย่างให้ทำเยอะมาก แต่เหนือสิ่งอื่นใด งานอดิเรกนั้นต้องทำให้เราสนุกและมีความสุขกับการได้ทำมันแน่ๆ “Do what you love,

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1