รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

รากที่ n ของจำนวนจริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง คือจำนวนจริงตัวหนึ่งยกกำลัง n แล้วเท่ากับ x   เมื่อ n > 1 เราสามารถตรวจสอบรากที่ n ได้ง่ายๆ โดยนิยามดังนี้

นิยาม

ให้  x, y เป็นจำนวนจริง และ n เป็นจำนวนเต็มที่มากกว่า 1 เราจะบอกว่า y เป็นรากที่ n ของ x ก็ต่อเมื่อ รากที่ n ของจำนวนจริง

 

เช่น 5 เป็นรากที่ 3 ของ 125 หรือไม่

จากที่เรารู้ว่า 5×5×5 = 125 ดังนั้น เราจึงสรุปได้ว่า 5 เป็นรากที่ 3 ของ 125 หรือสามารถพูดได้อีกแบบคือ รากที่ 3 ของ 125 คือ 5 เขียนให้สั้นลงได้เป็น \sqrt[3]{125}=5 นั่นเอง

ในกรณีที่ x = 0 จะได้ว่า \sqrt[n]{x} = 0

แต่ถ้า x > 0 จะได้ว่า n จะเป็นเลขคู่หรือคี่ก็ได้

**เมื่อ n เป็นจำนวนเต็มคู่ จะได้ว่า รากที่ n ของ x เป็นได้ทั้งจำนวนบวกและจำนวนลบ

เช่น -2, 2 เป็นรากที่ 4 ของ 16 เพราะ รากที่ n ของจำนวนจริง และ รากที่ n ของจำนวนจริง

 

ในกรณีที่ x < 0 ในระบบจำนวนจริง n ควรจะเป็นเลขคี่

สมมติว่า n เป็นเลขคู่

\sqrt[4]{-16}  จะเห็นว่าไม่มีจำนวนจริงใดยกกำลัง 4 แล้วได้ -16 เพราะปกติแล้วยกกำลังคู่ต้องได้จำนวนบวก ดังนั้นจึงไม่มีคำตอบในระบบจำนวนจริง (แต่มีคำตอบในจำนวนเชิงซ้อน ซึ่งน้องๆจะได้เรียนในบทจำนวนเชิงซ้อน)

สมมติว่า n เป็นเลขคี่

\sqrt[3]{-125} = -5 เพราะ (-5)×(-5)×(-5) = (-5)³ = -125

จำนวนจริงในรูปกรณฑ์

กรณฑ์ หรือค่าหลักของราก มีนิยามดังนี้

นิยาม

ให้ x, y เป็นจำนวนจริง และ n เป็นจำนวนเต็มที่มากกว่า 1 จะบอกว่า y เป็นค่าหลักของรากที่ n ของ x ก็ต่อเมื่อ

  1. y เป็นรากที่ n ของ x
  2. xy ≥ 0

จากนิยามจะเห็นว่า ถ้า y จะเป็นค่าหลักของรากที่ n ของ x ได้ จะได้ต้องมีคูณสมบัติครบทั้งสองข้อ มีข้อใดข้อหนึ่งไม่ได้

และเราจะเขียน \sqrt[n]{x} แทนค่าหลักของรากที่ n ของ x อ่านได้อีกอย่างว่า กรณฑ์ที่ n ของ x

ตัวอย่าง

-3 เป็นกรณฑ์ที่ 3 ของ -27 เพราะว่า

  1. -3 เป็นรากที่ 3 ของ 3 (เนื่องจาก รากที่ n ของจำนวนจริง)
  2. (-27)(-3) = 81 ≥ 0

-2 เป็นรากที่ 4 ของ 16 แต่ -2 นั้นไม่เป็นกรณฑ์ที่ 4 ของ 16 เพราะว่า (-2)(16) = -32 < 0

สมบัติที่ควรรู้

ให้ a, b เป็นจำนวนจริง และ m, n เป็นจำนวนเต็มที่มากกว่า 1

  1. จำนวนจริงในรูปกรณฑ์
  2. \sqrt[n]{1}=1
  3. \sqrt[n]{0}=0
  4. (\sqrt[n]{a})^n=a
  5. \sqrt[n]{ab}=\sqrt[n]{a}\times \sqrt[n]{b}
  6. \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}},b\neq 0
  7. \sqrt[n]{a^{n}} = a เมื่อ n เป็นจำนวนเต็มคี่   เช่น  \sqrt[3]{(-3)^3} = -3 , \sqrt[5]{2^{5}}=2
  8. \sqrt[n]{a^{n}} = \left | a \right | เมื่อ n เป็นจำนวนเต็มคู่   เช่น \sqrt[4]{2^{4}}= \left | 2 \right |=2 , \sqrt[4]{(-3)^4}=\left | -3 \right |=3

 

สูตรลัดในการหารากที่ 2

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง

 

ตัวอย่าง

1.)     รากที่ n ของจำนวนจริง

 

2.)    \sqrt[3]{4\sqrt[3]{4\sqrt[3]{4...}}}= \sqrt[3-1]{4}=\sqrt[2]{4}=2

 

การหาผลบวก และผลต่างของจำนวนจริงในรูปกรณฑ์

วิธีการหาคือ

  1. อันดับของกรณฑ์ต้องเหมือนกัน
  2. เลขข้างในต้องเหมือนกันด้วย โดยอาจจะทำให้เป็นจำนวนเฉพาะหรืออาจจะทำให้เป็นจำนวนที่ต่ำที่สุด

ตัวอย่าง

1.) 3\sqrt{8}-\sqrt{2}+\sqrt{32}

รากที่ n ของจำนวนจริง

 

การหาผลคูณและผลหารของจำนวนจริงในรูปกรณฑ์

 

หลักการก็คือ

  1. อันดับของกรณฑ์ต้องเหมือนกัน
  2. ถ้าอันดับของกรณฑ์ไม่เหมือนกันจะต้องทำให้อันดับเหมือนกันก่อน โดยใช้สมบัติ   

 

ตัวอย่าง 

จะเขียน \sqrt[3]{8}\sqrt{6} ให้อยู่ในรูปอย่างง่าย

รากที่ n ของจำนวนจริง

 

 

วิดีโอ รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การเปลี่ยนแปลงคำ เรียนรู้วิวัฒนาการทางภาษาที่ไม่เคยหยุดนิ่ง

ภาษาเป็นเครื่องมือที่มนุษย์ใช้สื่อสารกัน แต่ในเมื่อสังคมมนุษย์ไม่สามารถหยุดนิ่งได้ และมีความเจริญทางวิทยาการใหม่ ๆ เข้ามาอยู่เสมอ ทำให้เกิดการเปลี่ยนแปลงทางภาษามากมาย การเปลี่ยนแปลงคำ เป็นการเปลี่ยนแปลงที่เกิดขึ้นในธรรมชาติของมนุษย์ จากครั้งที่แล้วที่เราได้เรียนรู้เกี่ยวกับการเปลี่ยนแปลงของประโยคกันไป บทเรียนในวันนี้จะพาน้อง ๆ เจาะลึกอีกหนึ่งการเปลี่ยนแปลงซึ่งก็คือการเปลี่ยนแปลงคำว่ามีอะไรกันบ้าง และมีคำใดที่เคยใช้ในสมัยโบราณแต่ปัจจุบันเลิกใช้ไปแล้ว ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   การเปลี่ยนแปลงคำ   เกิดจากการเปลี่ยนแปลงของภาษาพูดและเขียนเมื่อถูกใช้ต่อกันมาเรื่อย ๆ ลักษณะของการเปลี่ยนแปลงคำต่าง ๆ สามารถแบ่งได้ดังนี้     1.

ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์ ตัวผกผันของความสัมพันธ์ r คือความสัมพันธ์ใหม่ที่เกิดจากการสลับตำแหน่งของสมาชิกตัวหน้ากับสมาชิกตัวหลังของคู่อันดับทุกคู่ในความสัมพันธ์ r เขียนแทนด้วย   ซึ่ง = {(y, x) : (x, y ) ∈ r} เช่น r = {(1, 2), (3, 4), (5,

should have

I Should Have Done It! โครงสร้างประโยค “รู้งี้”

สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับหลักไวยากรณ์เล็กๆ น้อยๆ ที่ได้ใช้ประโยชน์มากๆ นั่นคือเรื่องการใช้ should have + past participle นั่นเองครับ จะเป็นอย่างไรลองไปดูกันเลยครับ

ศัพท์บัญญัติ

ศัพท์บัญญัติ เรียนรู้การยืมคำและบัญญัติขึ้นใหม่

น้อง ๆ หลายคนอาจจะไม่ค่อยคุ้นเคยกับคำว่า ศัพท์บัญญัติ สักเท่าไหร่ บทเรียนวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับศัพท์บัญญัติที่ว่านั่นกันค่ะว่าคืออะไร มีที่มาและมีหลักเกณฑ์ในการสร้างอย่างไรบ้าง ถ้าน้อง ๆ พร้อมที่จะเรียนรู้กันแล้ว ก็ไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   การบัญญัติศัพท์คืออะไร     การบัญญัติศัพท์ คือการกำหนดคำศัพท์จากภาษาต่างประเทศขึ้นมาใหม่ในภาษาไทย เพื่อใช้สื่อความหมายบางอย่างโดยเฉพาะในศาสตร์แขนงใดแขนงหนึ่ง หรือเพื่อใช้ในการเขียนเอกสารของงานราชการ ตามเจตนาของผู้บัญญัติ ซึ่งคำศัพท์ที่เกิดจากวิธีการเช่นนี้จะเรียกว่า ศัพท์บัญญัติ โดยทั่วแล้วศัพท์บัญญัติมักจะมาจากภาษาอังกฤษ

ประมาณค่าทศนิยมด้วยการปัดทิ้งและปัดทด

บทความนี้จะพูดถึงเรื่องพื้นฐานของทศนิยมอีก 1 เรื่องก็คือการประมาณค่าใกล้เคียงของทศนิยม น้อง ๆคงอาจจะเคยเรียนการประมาณค่าใกล้เคียงของจำนวนเต็มมาแล้ว การประมาณค่าทศนิยมหลักการคล้ายกับการประมาณค่าจำนวนเต็มแต่อาจจะแตกต่างกันที่คำพูดที่ใช้ เช่นจำนวนเต็มจะใช้คำว่าหลักส่วนทศนิยมจะใช้คำว่าตำแหน่ง บทความนี้จึงจะมาแนะนำหลักการประมาณค่าทศนิยมให้น้อง ๆเข้าใจ และสามารถประมาณค่าทศนิยมได้อย่างถูกต้อง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1