ฟังก์ชันผกผัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย f^{-1} เมื่อ f เป็นฟังก์ชัน

จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป

เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ

ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

พิจารณาตัวผกผันของ f เท่ากับ {(2, 1), (2, 3), (5, 4), (5, 6)}  จากนิยามของฟังก์ชัน ถ้าตัวหน้าเท่ากันแล้วตัวหลังจะต้องเท่ากัน ทำให้ได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างตัวผกผันของฟังก์ชัน

หาฟังก์ชันผกผันของ  เมื่อ

1.) f(x) = \frac{1}{x-2}

ให้ f(x) = y

ขั้นตอนที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x=\frac{1}{y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้  ฟังก์ชันผกผัน

ดังนั้น  = \frac{1}{x}+2  เมื่อ x ≠ 0 (เพราะถ้า x =0จะหาค่าไม่ได้)

2.) f(x) = \sqrt{x+3}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \sqrt{y+3}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ 

ดังนั้น f^{-1}(x) = x^2-3

 

3.) f(x) = \frac{2x-3}{3x-2}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \frac{2y-3}{3y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ ฟังก์ชันผกผัน

ดังนั้น f^{-1}(x) = \frac{2x-3}{3x-2}  เมื่อ x ≠  \frac{2}{3}

 

ให้ f(x) = 3x + 5 จงหา

4.) f^{-1}(3)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย 3

จะได้  f^{-1}(3) = \frac{5-3}{3}=\frac{2}{3}

 

5.) f^{-1}(-1)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย -1

จะได้  f^{-1}(-1) = \frac{5-(-1)}{3}=\frac{5+1}{3}=\frac{6}{3}=2

 

การตรวจสอบว่าตัวผกผันของ f เป็นฟังก์ชันหรือไม่

การตรวจสอบทำได้ 2 วิธี คือ

  1. หาตัวผกผันมาก่อนแล้วเช็คว่าตัวผกผันนั้นเป็นฟังก์ชันหรือไม่
  2. หาจากทฤษฎีบทต่อไปนี้

ตัวผกผันของ f เป็นฟังก์ชัน ก็ต่อเมื่อ f เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ขยายความทฤษฎีบท

ฟังก์ชันผกผันเรามีข้อความอยู่สองข้อความ ที่มีตัวเชื่อม ก็ต่อเมื่อขั้นกลางอยู่

ถ้าเรารู้ว่าฝั่งใดฝั่งหนึ่งจริง เราสามารถสรุปข้อความอีกฝั่งหนึ่งได้เลย

เช่น ถ้าเรารู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน เราก็จะรู้ด้วยว่า f เป็นฟังก์ชัน

ในขณะเดียวกัน ถ้าเรารู้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราก็จะรู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน

 

แต่ ถ้าเรารู้ว่าข้อความฝั่งหนึ่งไม่จริง เราก็สามารถสรุปได้เช่นกันว่า ข้อความอีกฝั่งก็ไม่จริง

เช่น เรารู้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน เราสามารถสรุปได้เลยว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ถ้าเรารู้ว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราสามารถสรุปได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างการตรวจสอบ ฟังก์ชันผกผัน

 

ให้ f เป็นฟังก์ชัน ที่ f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

วิธีทำ 1 จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะได้ว่า f^{-1}  = {(y, x ) : y, x ∈ \mathbb{R} และ y = 2x + 3}

หรือเขียนได้อีกแบบคือ f^{-1} = {(x, y) : x, y ∈ \mathbb{R} และ x = 2y + 3}  << ตรงสมการ เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะตรวจสอบว่า f^{-1} เป็นฟังก์ชันหรือไม่ โดยสมมติคู่อันดับมาสองคู่ ให้เป็น (x_1, y_1),(x_1,y_2) ซึ่งทั้งสองคู่อันดับนี้ เป็นคู่อันดับใน f^{-1}

ดังนั้นเราสามารถแทน คู่อันดับทั้งสองไปในสมการ x = 2y + 3 ได้

ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันจะได้ว่า f^{-1} เป็นฟังก์ชันเพราะ เมื่อสมาชิกตัวหน้าของคู่อันดับเหมือนกันสมาชิกตัวหลังก็เหมือนกันด้วย

วิธีที่ 2  จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะตรวจสอบว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่งหรือไม่เพื่อนำมาสรุปการเป็นฟังก์ชันของf^{-1} 

สมมติให้ (x_1,y_1),(x_2,y_1) เป็นคู่อันดับใน f 

ดังนั้นเราสามารถแทนคู่อันดับทั้งสองคู่อันดับในสมการ y = 2x + 3 ได้

ได้เป็น ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันหนึ่งต่อหนึ่ง จะได้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เพราะเมื่อเราให้สมาชิกตัวหลังเท่ากันแล้วเราได้ว่าสมาชิกตัวหน้าก็เท่ากัน

และ จาก f เป็นฟังก์ชันหนึ่งต่อหนึ่งเลยทำให้สรุปได้ว่า f^{-1} เป็นฟังก์ชัน

 

จากวิธีทั้งสองวิธี น้องๆสามารถเลือกวิธีตรวจสอบที่ตัวเองถนัดได้เลย ได้คำตอบเหมือนกันจ้า

 

เนื้อหาที่ควรรู้เพื่อง่ายต่อการทำความเข้าใจ

 

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Present Perfect

Present Perfect ในภาษาอังกฤษ

สวัสดีน้องๆ ม.​ 4 ทุกคนนะครับ วันนี้เราจะมาพูดถึงเรื่อง Present Perfect ในภาษาอังกฤษ จะเป็นอย่างไรลองไปดูกันเลยดีกว่าครับ

มงคลสูตร

รอบรู้เรื่องมงคลสูตรคำฉันท์ วรรณคดีพระพุทธศาสนาที่มาของหลักมงคล 38

บทนำ   สวัสดีน้อง ๆ ทุกคนกลับมาพบกับบทเรียนภาษาไทยที่น่าสนใจอีกเช่นเคย สำหรับเนื้อหาวันนี้เราจะขอหยิบยกวรรณคดีพระพุทธศาสนามาเล่าให้ทุกคนได้ฟังกันบ้าง ซึ่งวรรณคดีที่เราได้เลือกมานั่นก็คือเรื่อง มงคลสูตรคำฉันท์ เชื่อว่าน้อง ๆ มัธยมปลายหลายคนคงจะคุ้นเคยกับเรื่องนี้กันดีอยู่แล้ว เพราะเป็นวรรณคดี ที่สอนบรรทัดฐานของการกระทำความดีตามวิถีของชาวพุทธ และเป็นที่มาของหลักมงคล 38 ประการด้วย ดีงนั้น เดี๋ยววันนี้เราจะพาน้อง ๆ ไปรู้จักกับวรรณคดีเรื่องนี้ให้มากขึ้น ถ้าพร้อมแล้วก็เตรียมตัวเข้าสู่เนื้อหากันได้เลย     ประวัติความเป็นมา เรื่อง

ความรู้เบื้องต้นเกี่ยวกับเซต

เซตคืออะไร? เซต คือ คำที่ใช้เรียกกลุ่มของสิ่งต่างๆ ทำไมต้องเรียนเซต เซตมีประโยชน์ในเรื่องของการจำแนกสิ่งต่างๆออกเป็นกลุ่มๆ อีกทั้งยังแทรกอยู่ในเนื้อหาบทอื่นๆของคณิตศาสตร์ เราจึงจำเป็นต้องทำความเข้าใจเกี่ยวกับเซต เพื่อที่จะเรียนเนื้อหาบทอื่นๆได้ง่ายขึ้น ความรู้เบื้องต้นเกี่ยวกับเซต เซต คือคำที่ใช้เรียกกลุ่มของสิ่งต่างๆ เช่น เซตของสระในภาษาอังกฤษ คือ กลุ่มของสระในภาษาอังกฤษ a,e,i,o,u เป็นต้น สมาชิกของเซต คือ สิ่งที่อยู่ในเซต เช่น เซตของสระในภาษาอังกฤษ สมาชิกของเซต คือ

โคลงโลกนิติ

ศึกษาตัวบทและคุณค่าที่แฝงอยู่ในโคลงโลกนิติ

หลังจากที่ได้เรียนรู้ความเป็นมาและเนื้อหาในโคลงโลกนิติกันแล้ว น้อง ๆ ก็คงจะอยากรู้กันแล้วใช่ไหมคะว่าตัวบทในโคลงโลกนิติที่มีอยู่มากมายนั้น มีตัวบทไหนที่เด่น ๆ กันบ้าง วันนี้เรามาศึกษาตัวบทที่น่าสนใจเพื่อทำความเข้าใจถึงคติธรรมและคุณค่าที่อยู่ในเรื่องกันค่ะ โคลงโลกนิติ โคลงโลกนิติเป็นบทประพันธ์ที่มีคำสอนมากมาย ไม่ว่าจะเป็นเรื่องของการคบเพื่อน การปฏิบัติตัวกับพ่อแม่ หรือแม้แต่การดำเนินชีวิตในแต่ละวัน เรามาดูตัวบทเด่น ๆ ที่ควรรู้กันทีละบทเลยนะคะว่าแต่ละบทสอนเรื่องอะไรบ้าง   ศึกษาตัวบท     ความหมาย กล่าวถึงปลาร้าที่มีกลิ่นเหม็น และใบคา แม้ใบคาจะเป็นใบไม้ที่ไม่มีกลิ่นเฉพาะตัว แต่เมื่อนำไปห่อปลาร้าก็จะทำให้มีกลิ่นเหม็นจากปลาร้าติดไปด้วย

รากที่สอง

รากที่สอง

การหารากที่สองของจำนวนจริงทำได้หลายวิธี สำหรับวิธีการคำนวณ นักเรียนจะได้เรียนในระดับชั้นที่สูงกว่านี้ สำหรับในชั้นนี้ นักเรียนอาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง

การวัด

การวัดและความเป็นมาของการวัด

ในบทความนี้เราจะได้เรียนรู้ความเป็นมาของการวัดในหลายๆมิติ จนกระทั่งวิวัฒนาการที่ทำให้ได้ความแม่นยำในการวัดอย่างเป็นมาตรฐานมากขึ้นเรื่อยๆ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1