สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล)

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้ได้รวบรวมความรู้เรื่อง ค่ากลางของข้อมูลและการกระจายของข้อมูล ซึ่งค่ากลางของข้อมูลจะประกอบด้วย ค่าเฉลี่ยเลขคณิต มัธยฐาน และฐานนิยม ส่วนการวัดการกระจายของข้อมูลจะศึกษาในเรื่องการหาส่วนเบี่ยงเบนมาตรฐาน ซึ่งน้องๆสามารถทบทวน การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ได้ที่  ⇒⇒  การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ⇐⇐

หมายเหตุ ค่าเฉลี่ยในทางคณิตศาสตร์มีหลายชนิด แต่ที่นิยมใช้คือค่าเฉลี่ยเลขคณิต

การวัดค่ากลางของข้อมูล  เป็นการหาค่ากลางมาเป็นตัวแทนของข้อมูลแต่ละชุด ซึ่งมีวิธีการหาได้หลายวิธีที่นิยมกัน ได้แก่

  • ค่าเฉลี่ยเลขคณิต
  • มัธยฐาน
  • ฐานนิยม

ค่าเฉลี่ยเลขคณิต (Arithmetic mean)

ค่าเฉลี่ยเลขคณิต คือ ค่าของผลรวมของค่าสังเกตของข้อมูลทั้งหมดหารด้วยจำนวนข้อมูลทั้งหมด เรียกสั้นๆ ว่า ค่าเฉลี่ย ซึ่งในการหาค่าเฉลี่ยเลขคณิตจะประกอบด้วยการหาค่าเฉลี่ยของข้อมูลที่ไม่ได้แจกแจงความถี่ และ การหาค่าเฉลี่ยของข้อมูลที่แจกแจงความถี่ 

การหาค่าเฉลี่ยเลขคณิตของข้อมูลที่ไม่แจกแจงความถี่

(ข้อมูลไม่ได้จัดอยู่ในรูปตารางแจกแจงความถี่) มีสูตร ดังนี้

ค่าเฉลี่ยเลขคณิต = ผลรวมของข้อมูลทั้งหมด ⁄จำนวนของข้อมูล

หรือ ผลรวมของข้อมูล = ค่าเฉลี่ยเลขคณิต x จำนวนของข้อมูล

หรือ จำนวนข้อมูลทั้งหมด = ผลรวมของข้อมูลทั้งหมด ⁄ ค่าเฉลี่ยเลขคณิต

ตัวอย่างที่ 1    จงหาค่าเฉลี่ยเลขคณิตของข้อมูล 20  22  25  27  24  28  26  28

วิธีทำ   ค่าเฉลี่ยเลขคณิต =   ผลรวมของข้อมูลทั้งหมด ⁄จำนวนของข้อมูล    

 ค่าเฉลี่ยเลขคณิต = \frac{20+22+25+27+24+28+26+28}{8}      

                \frac{200}{8}              

      =  25

ดังนั้น ค่าเฉลี่ยเลขคณิต คือ 25

ตัวอย่างที่ 2  อนันต์ทดสอบเก็บคะแนนวิชาคณิตศาสตร์ 3 ครั้ง คือ  18  15  16 อยากทราบว่าอนันต์ทดสอบเก็บคะแนนได้คะแนนเฉลี่ยเท่าไร                            

วิธีทำ  อนันต์ได้คะแนนเฉลี่ย   =   \frac{18+15+16}{3}    

                           =    \frac{49}{3}   

                          ≈   16.33

ดังนั้น อนันต์ทดสอบเก็บคะแนนได้คะแนนเฉลี่ยประมาณ 16.33   

ตัวอย่างที่ 3   ในค่ายมวยแห่งหนึ่งมีนักมวยทั้งหมด  6  คน  โดยที่นักมวยแต่ละคนมีน้ำหนักคิดเป็น

ปอนด์  ดังนี้  125, 303, 163, 175, 181, 220  จงหาค่าเฉลี่ยเลขคณิตของน้ำหนักของนักมวยในค่ายนี้

วิธีทำ น้ำหนักเฉลี่ยต่อคน = \frac{125+330+163+175+181+220}{6}

 = \frac{1194}{6}

  = 199 

ดังนั้น  ค่าเฉลี่ยเลขคณิตของน้ำหนักของนักมวยในค่ายนี้เท่ากับ  199  ปอนด์

ตัวอย่างที่ 4 เลือกนักเรียนในชนบทแห่งหนึ่งมาจำนวน  10  คน  ปรากฏว่ามีรายได้ต่อวันคิดเป็นบาทดังนี้  85, 70, 10, 75, 44, 80, 42, 45, 40, 36  จงหาค่าเฉลี่ยเลขคณิตของรายได้ของนักเรียนดังกล่าว

วิธีทำ              รายได้เฉลี่ยต่อวัน = \frac{85+70+10+75+44+80+42+45+40+36}{10}

     = \frac{567}{10}

     = 56.7                                 

ดังนั้น  ค่าเฉลี่ยเลขคณิตของรายได้ของนักเรียนเท่ากับ  56.7  บาทต่อวัน

ตัวอย่างที่ 5  ข้อมูลชุดหนึ่งมี  9  จำนวน  ถ้าค่าเฉลี่ยเลขคณิตของข้อมูลชุดนี้เท่ากับ  4.5  ผลรวมของ

ข้อมูลชุดนี้เท่ากับเท่าใด

วิธีทำ   จากสูตร ผลรวมของข้อมูล  =  ค่าเฉลี่ยเลขคณิต x จำนวนของข้อมูล

   จะได้  ผลรวมของข้อมูล  =  9 x 4.5

    = 40.5

ดังนั้น  ผลรวมของข้อมูลชุดนี้เท่ากับ  40.5

ตัวอย่างที่ 6   ในการทดสอบเก็บคะแนน  อาริสาสอบได้ 76, 84  และ 73  คะแนน  ตามลำดับ จงหาว่าในการสอบครั้งที่ 4  อาริสาจะต้องสอบให้ได้กี่คะแนนจึงจะทำให้ค่าเฉลี่ยเลขคณิตของคะแนนสอบทั้งสี่ครั้งเป็น 80 คะแนน

วิธีทำ              จาก   ค่าเฉลี่ย = \frac{X_{1}+X_{2}+X_{3}+X_{4}}{n}              

                     จะได้           80 = \frac{76+84+73+X_{4}}{4}

80 x 4 = 233 + X₄   

    320 =  233 + X₄ 

     X₄  = 320 – 233 

     X₄  = 87  

ดังนั้น   ในการสอบครั้งที่  4 อาริสาจะต้องสอบได้  87  คะแนน

การหาค่าเฉลี่ยเลขคณิตของข้อมูลที่แจกแจงความถี่ 

(ในรูปตารางที่เป็นช่วงหรืออันตรภาคชั้น) มีสูตร ดังนี้

ค่าเฉลี่ยเลขคณิต = ∑fX ⁄ N

เมื่อ ∑ คือผลรวม , X คือ ข้อมูล , N คือ จำนวนข้อมูลหรือความถี่

 

ตัวอย่างที่ 7  ผลการสอบวิชาคณิตศาสตร์ของนักเรียน  20  คน  เป็นดังนี้

คะแนน 15 18 20 21 25 27 30
จำนวนนักเรียน 2 3 2 4 2 1 1

จงหาค่าเฉลี่ยเลขคณิตของคะแนนสอบครั้งนี้

วิธีทำ  สร้างตารางเพื่อคำนวณหาค่าเฉลี่ยเลขคณิตดังนี้

คะแนน (X)

จำนวนนักเรียน (f)

fX

15

2 15 x 2

18

3 18 x 3
20 2 20 x 2

21

4 21 x 4

25

2 25 x 2

27

1 27 x 1

30

1 30 x 1
รวม N = 15

∑fX = 315

                     จาก   ค่าเฉลี่ยเลขคณิต = ∑fX ⁄ N       

                     จะได้    ค่าเฉลี่ยเลขคณิตของคะแนนสอบ =  ³¹⁵⁄₁₅  = 21 

ดังนั้น  ค่าเฉลี่ยเลขคณิตของคะแนนสอบครั้งนี้  เท่ากับ  21 คะแนน

ตัวอย่างที่ 8      จงหาค่าเฉลี่ยของอายุชาวบ้านในชุมชนแห่งหนึ่งจำนวน  20  คน

อายุ (ปี)

จำนวนคน

11 – 15

4
16 – 20

3

21 – 25

2
26 – 30

4

31 – 35

5

36 – 40

2

วิธีทำ สร้างตารางเพื่อคำนวณหาค่าเฉลี่ยเลขคณิตดังนี้

อายุ (ปี)

จำนวนคน(f) จุดกึ่งกลาง (X) fX

11 – 15

4 13 52
16 – 20 3 18

54

21 – 25 2 23

46

26 – 30 4 28

112

31 – 35

5 33

165

36 – 40

2 38

76

N = 20 ∑fX = 505

จาก   ค่าเฉลี่ยเลขคณิต = ∑fX ⁄ N         

จะได้    ค่าเฉลี่ยเลขคณิตของคะแนนสอบ = ⁵⁰⁵⁄₂₀ = 25.25

ดังนั้น  ค่าเฉลี่ยเลขคณิตของคะแนนสอบครั้งนี้  เท่ากับ  25.25  คะแนน

มัธยฐาน (Median)     

มัธยฐาน คือ ค่าที่มีตำแหน่งอยู่กึ่งกลางของข้อมูลทั้งหมด เมื่อได้เรียงข้อมูลตามลำดับ ไม่ว่าจากน้อยไปมาก หรือจากมากไปน้อย  แทนด้วยสัญลักษณ์  Me  หรือ  Med

การหามัธยฐานของข้อมูลที่ไม่ได้แจกแจงความถี่

1) เรียงข้อมูลที่มีอยู่ทั้งหมดจากน้อยไปมาก หรือมากไปน้อยก็ได้

2) ตำแหน่งมัธยฐาน คือ ตำแหน่งกึ่งกลางข้อมูลทั้งหมด

      ดังนั้น ตำแหน่งของมัธยฐาน คือ   เมื่อ  N  คือ จำนวนข้อมูลทั้งหมด

 3) มัธยฐาน คือ ค่าที่มีตำแหน่งอยู่กึ่งกลางของข้อมูลทั้งหมด

ตัวอย่างที่ 9  จงหามัธยฐานของข้อมูล  2, 6, 4, 8, 12, 14, 10  

วิธีทำ   เรียงข้อมูลจากน้อยไปมาก  จะได้   2, 4, 6, 8, 10, 12, 14                                                  

   ตำแหน่งของค่ามัธยฐาน  คือ \frac{N+1}{2} = \frac{7+1}{2} = 4

ดังนั้น  ค่ามัธยฐาน  คือ  8

ตัวอย่างที่ 10 จงหามัธยฐานของข้อมูล  1, 7, 5, 11, 13, 15, 17, 9                 

วิธีทำ   เรียงข้อมูลจากน้อยไปมาก  จะได้   1, 5, 7, 9, 11, 13, 15, 17      

           ตำแหน่งของค่ามัธยฐาน  คือ \frac{N+1}{2} = \frac{8+1}{2} = 4.5

           ค่ามัธยฐานของข้อมูลอยู่ระหว่างตำแหน่งที่  4 และ  5

ดังนั้น  ค่ามัธยฐาน  เท่ากับ  \frac{9+11}{2}²⁰⁄₂ = 10

ฐานนิยม (Mode)     

ฐานนิยม คือ ข้อมูลที่มีความถี่สูงสุดหรือปรากฏบ่อยครั้งที่สุด จะใช้กับข้อมูลเชิงคุณภาพมากกว่าเชิงปริมาณ เช่น ขนาดรองเท้า ขนาดยางรถยนต์

ตัวอย่างที่ 11  จงหาฐานนิยมของขนาดรองเท้าของนักเรียนจำนวน 15 คน  ซึ่งมีขนาด  4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9

ตอบ  ฐานนิยมของขนาดรองเท้าของนักเรียนจำนวน 15 คน  คือ  5  เพราะมีรองเท้าขนาด 5  มากที่สุด  คือ 4 คน  กล่าวคือ  นักเรียนส่วนใหญ่ใช้รองเท้าขนาด 5

ตัวอย่างที่ 12  ข้อมูลชุดหนึ่งประกอบด้วย  3, 5, 8, 10, 12, 15, 16  จงหาฐานนิยม

ตอบ   ไม่มีฐานนิยม  เพราะ  ข้อมูลแต่ละค่ามีความถี่เท่ากันหมด

ตัวอย่างที่ 13   ข้อมูลซึ่งประกอบด้วย  5, 4, 6, 6, 6, 7, 8, 8, 8, 9, 9, 9  จงหาฐานนิยม

ตอบ   ไม่มีฐานนิยม เพราะ  ข้อมูลมีความถี่สูงสุดเท่ากันสามค่า คือ 6, 8 และ 9

ตัวอย่างที่ 14  ข้อมูลต่อไปนี้แสดงจำนวนนักศึกษาสาขาวิชาต่างๆ ของสถาบันการศึกษาแห่งหนึ่ง

สาขาวิชา

จำนวนนักศึกษา
ศึกษาศาสตร์

นิติศาสตร์

บริหารธุรกิจ

มนุษยศาสตร์

ศิลปกรรมศาสตร์

500

400

450

350

300

จากตารางนี้  จงหาฐานนิยม

ตอบ ฐานนิยมของข้อมูลนี้  คือ สาขาวิชาศึกษาศาสตร์ เพราะ มีความถี่มากที่สุด  เท่ากับ  500

ส่วนเบี่ยงเบนมาตรฐาน 

ส่วนเบี่ยงเบนมาตรฐาน   เป็นการวัดการกระจายของข้อมูลที่ใช้ข้อมูลทุกค่ามาคำนวณ ซึ่งเป็นวิธีการวัดการกระจายที่นิยมและเชื่อถือได้มากที่สุด  การหาส่วนเบี่ยงเบนมาตรฐานของข้อมูลหาได้โดยใช้สูตรดังนี้

ส่วนเบี่ยงเบนมาตรฐาน

ตัวอย่างที่ 15  อุณหภูมิในจังหวัดเชียงใหม่ ซึ่งวัดทุกเช้าวันที่ 1 ของทุก ๆ เดือน ในปีที่ผ่านมาเป็นดังนี้

เดือน

ม.ค. ก.พ. มี.ค. เม.ย. พ.ค. มิ.ย. ก.ค. ส.ค. ก.ย. ต.ค. พ.ย. ธ.ค.
อุณหภูมิ 2 6 10 24 23 23 22 21 21 20 14

6

จงหาส่วนเบี่ยงเบนมาตรฐานของข้อมูลชุดนี้

วิธีทำ    จากโจทย์ต้องการหาส่วนเบี่ยงเบนมาตรฐานของข้อมูล 

สูตรที่ใช้ในการคำนวณ  คือ

ส่วนเบี่ยงเบนมาตรฐาน

ขั้นแรก หาค่าเฉลี่ย (μ)   และเราทราบจำนวนข้อมูล (N) เท่ากับ  12

ค่าเฉลี่ย (μ) = \frac{2+6+10+24+23+23+22+21+21+20+14+6}{12}

         =  ¹⁹²⁄ ₁₂ = 16

ขั้นที่สอง  หาค่าของ  ส่วนเบี่ยงเบนมาตรฐาน2  ได้ดังนี้

X X – µ (X – µ)²

2

6

10

24

23

23

22

21

21

20

14

6

-14

-10

-6

8

7

7

6

5

5

4

-2

-10

196

100

36

64

49

49

36

25

25

16

4

100

ส่วนเบี่ยงเบนมาตรฐาน2= 700

จะได้   ส่วนเบี่ยงเบนมาตรฐาน2    =  700

และ    ส่วนเบี่ยงเบนมาตรฐาน      = \frac{\sqrt{700}}{12} ≈ 2.23 

ดังนั้น  ส่วนเบี่ยงเบนมาตรฐานของข้อมูลชุดนี้ มีค่าประมาณ  2.23 

คลิปวิดีโอ 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

จดหมายถึงญาติผู้ใหญ่

จดหมายถึงญาติผู้ใหญ่ เขียนอย่างไรให้ถูกกาลเทศะ

​จดหมายเป็นการสื่อสารที่มีรูปแบบเฉพาะ โดยผู้เขียนจะต้องเลือกใช้ถ้อยคำให้ถูกต้อง เหมาะสมแก่ผู้รับ การเขียนจดหมายนั้นมีหลายแบบ แต่บทเรียนที่น้อง ๆ จะได้เรียนรู้กันในวันนี้คือ จดหมายถึงญาติผู้ใหญ่ เราจะมีวิธีเขียนจดหมายอย่างให้ถูกต้องและถูกกาลเทศะมากที่สุด เราไปเรียนรู้พร้อมกันเลยค่ะ   การเขียนจดหมายถึงญาติผู้ใหญ่   การเขียนจดหมาย   1. ผู้ส่งจดหมาย 2. จดหมาย 3. ผู้รับจดหมาย   ตัวอย่างการเขียนจดหมาย   ​

วิธีพูดสรุปความจากเรื่องที่ฟังและดูอย่างง่ายๆ

การพูดสรุปความสำคัญอย่างไร ? น้อง ๆ หลายคนคงจะเคยประสบปัญหาเวลาที่ต้องออกไปนำเสนองานหน้าชั้นเรียนแล้วไม่รู้ว่าจะพูดอย่างไรให้เพื่อนกับครูเข้าใจ เพราะเนื้อหาที่เราจำมามันก็เยอะเสียเหลือเกิน บทเรียนภาษาไทยวันนี้จะช่วยให้น้อง ๆ รับมือกับปัญหาเหล่านั้นได้ เพียงแค่น้อง ๆ มีความเข้าใจในเรื่องการพูดสรุปความ วันนี้เรามาดูไปพร้อม ๆ กันเลยนะคะว่าการพูดสรุปความจากเรื่องที่ฟังหรือดูจะมีวิธีใดบ้าง   การพูดสรุปความจากเรื่องที่ฟังและดู   การพูดคืออะไร   องค์ประกอบของการพูด   ผู้พูด คือผู้ที่มีจุดมุ่งหมายสำคัญที่จะนำเสนอความรู้ความคิดเห็นให้ผู้ฟังได้รับรู้และเข้าใจ เนื้อเรื่อง

ความน่าจะเป็นของเหตุการณ์

ความน่าจะเป็นของเหตุการณ์ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐ ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ โดยที่ 

รากที่สอง

รากที่สอง

การหารากที่สองของจำนวนจริงทำได้หลายวิธี สำหรับวิธีการคำนวณ นักเรียนจะได้เรียนในระดับชั้นที่สูงกว่านี้ สำหรับในชั้นนี้ นักเรียนอาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง

จำนวนอตรรกยะ

จำนวนอตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนอตรรกยะ และหลักการของจำนวนอตรรกยะกับการนำไปประยุกต์

วิชชุมมาลาฉันท์

เรียนรู้การแต่ง วิชชุมมาลาฉันท์ 8 ฉันท์ที่เปล่งสำเนียงยาวดุจสายฟ้า

ฉันท์ คือ ลักษณะถ้อยคำที่กวีได้ประพันธ์ขึ้นเพื่อให้เกิดความไพเราะ โดยกำหนดครุ ลหุ และสัมผัสไว้เป็นมาตรฐาน มีด้วยกันมากมายหลายชนิด จากที่บทเรียนครั้งก่อนเราได้เรียนรู้เกี่ยวกับที่มาและพื้นฐานการแต่งฉันท์ไปแล้ว บทเรียนในวันนี้เราจะมาเจาะลึกให้ลึกขึ้นไปอีกด้วยการฝึกแต่ง วิชชุมมาลาฉันท์ 8 กันค่ะ ฉันท์ประเภทนี้จะเป็นอย่างไร ทำไมถึงเป็น 8  ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   คำประพันธ์ประเภท ฉันท์   ฉันท์ในภาษาไทยได้แบบแผนมาจากอินเดีย ในสมัยพระเวท แต่ลักษณะฉันท์ในสมัยพระเวทไม่เคร่งครัดเรื่องครุ ลหุ นอกจากจะบังคับเรื่องจำนวนคำในแต่ละบท

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1