ความเท่ากันทุกประการของรูปเรขาคณิต

ในบทความนี้เราจะได้เรียนรู้การเท่ากันทุกประการในส่วนต่างๆของรูปเรขาคณิต และบทนิยามที่กล่าวถึงความเท่ากันทุกประการของรูปเรขาคณิต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความเท่ากันทุกประการของรูปเรขาคณิตเกิดจากการสะท้อน การเลื่อนขนาน และการหมุน ซึ่งเป็นตัวอย่างของการเคลื่อนที่รูปเรขาคณิตซึ่งเป็นการแปลงตำแหน่งของรูปเรขาคณิตบนระนาบโดยที่ระยะระหว่างจุดสองจุดใด ๆของรูปนั้นไม่เปลี่ยนแปลง  หมายความถึงว่า รูปร่างและขนาดของรูปเรขาคณิตที่เคลื่อนที่นั้นไม่เปลี่ยนแปลง

ความเท่ากันทุกประการของรูปเรขาคณิต

พิจารณารูปต่อไปนี้

เท่ากันทุกประการ

ถ้าเรากำหนดให้ A เป็นรูปต้นแบบ และ A เกิดการแปลงไปเป็นรูป B C และ D ซึ่งเกิดจากการ “เคลื่อนที่” รูป A ดังนี้

รูป B เกิดจากการสะท้อนที่แกน Y

รูป D เกิดจากการเลื่อนขนานไปตามแกน Y

รูป C เกิดจากการหมุนรูป A ไป 180 °รอบจุด O

การเคลื่อนที่รูปเรขาคณิตจากการแปลงดังกล่าวข้างต้น เป็นตัวอย่างหนึ่งของการเปลี่ยนตำแหน่งของรูปเรขาคณิตบนระนาบ โดยที่ระยะระหว่างจุดสองจุดใด ๆ ของรูปนั้นไม่เปลี่ยนแปลง

แสดงว่ารูปร่างและขนาดของรูปเรขาคณิตที่เคลื่อนที่นั้นไม่เปลี่ยนแปลง และถ้าเราเคลื่อนรูป A B C และ D มาทับกัน รูปทั้งหมดก็สามารถทับกันได้สนิท เราถือว่ารูปทั้งหมดนั้นเท่ากันทุกประการ

บทนิยาม “รูปเรขาคณิตสองรูปเท่ากันทุกประการก็ต่อเมื่อเคลื่อนที่รูปหนึ่งไปทับอีกรูปหนึ่งได้สนิท”

นิยาม

การตรวจสอบว่ารูปเรขาคณิตสองรูปใดเท่ากันทุกประการหรือไม่อาจทำได้โดยใช้กระดาษลอกลายลอกรูปหนึ่งแล้วยกไปทับอีกรูปหนึ่งถ้าทับกันได้สนิทแสดงว่ารูปเรขาคณิตเท่ากันทุกประการ

ความเท่ากันทุกประการของส่วนของเส้นตรง

ส่วนของเส้นตรงสองเส้นเท่ากันทุกประการก็ต่อเมื่อส่วนของเส้นตรงทั้งสองนั้นยาวเท่ากัน

ความเท่ากันทุกประการของเส้นตรง

จากรูป AB เท่ากันทุกประการกับ CD แต่เวลาเขียนเป็นสัญลักษณ์ไม่นิยมเขียนว่า AB = CD จะเขียนเพียง AB = CD เท่านั้น

ความเท่ากันทุกประการของมุม

มุมสองมุมเท่ากันทุกประการก็ต่อเมื่อมุมทั้งสองมุมนั้นมีขนาดเท่ากัน

ความเท่ากันทุกประการของมุม

จากรูป ถ้า <ABC = <DEF แล้ว <ABC = <DEF และการเขียนสัญลักษณ์แทนการเท่ากันทุกประการของมุมจะเขียนเพียง <ABC = <DEF เท่านั้น

ข้อสังเกต

  1. เส้นตรงสองเส้นตัดกันจะเกิดมุมที่เท่ากันทุกประการ 2 คู่เรียกว่า “มุมตรงข้าม”

  1. ถ้ากำหนดให้รูป A = B และรูป B = C แล้วจะได้ว่ารูป A = รูป C
  2. รูปสี่เหลี่ยมผืนผ้าที่มีพื้นที่เท่ากัน อาจจะไม่เท่ากันทุกประการ เช่น รูปทั้งสองมี พื้นที่ 18 ตารางหน่วย รูปแรกอาจจะมีขนาด 2×9 ตารางหน่วยและรูปที่ 2 อาจจะมีขนาด 3 X 6 ตารางหน่วยเป็นต้น
  3. รูปสามเหลี่ยมสองรูปที่มีมุมเท่ากัน 3 คู่อาจจะไม่เท่ากันทุกประการ เช่น

  1. วงกลม 2 วงที่มีรัศมียาวเท่ากันจะเท่ากันทุกประการ
  2. รังสี 2 เส้นใด ๆ จะเท่ากันทุกประการ
  3. รูปสี่เหลี่ยมจัตุรัส 2 รูปที่มีพื้นที่เท่ากันจะเท่ากันทุกประการ

สมบัติอื่นๆของความเท่ากันทุกประการ

คลิปตัวอย่างเรื่องความเท่ากันทุกประการ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Imperative Sentence: เรียนรู้การใช้ประโยคคำสั่ง ขอร้องในชีวิตประจำวัน

เชื่อว่าชีวิตประจำวันของน้องๆ ไม่ว่าจะเป็นที่โรงเรียน ที่บ้าน หรือเวลาออกไปเที่ยว น้องๆ อาจจะเคยได้ยินประโยคประมาณนี้กันมาบ้าง

Turn off the computer! (จงปิดคอมพิวเตอร์!)

Please pass me the sugar (ช่วยส่งน้ำตาลมาให้ที)

Drink a lot of water (ดื่มน้ำเยอะๆ)

ประโยคเหล่านี้ภาษาอังกฤษมีชื่อเรียกว่า Imperative Sentence วันนี้เราจะมาดูกันว่า Imperative Sentence คืออะไร และสามารถใช้ในสถานการณ์ไหนได้บ้าง

สมบัติการบวกจำนวนจริง

สมบัติการบวกจำนวนจริง สมบัติการบวกจำนวนจริง เป็นสมบัติที่น้องๆต้องรู้ เพราะเป็นรากฐานของวิชาคณิตศาสตร์และน้องๆจะต้องใช้สมบัติพวกนี้ในการเรียนคณิตศาสตร์ในระดับที่สูงขึ้น สมบัติการบวกของจำนวนจริง มีทั้งหมด 5 ข้อ ดังนี้   1.) สมบัติปิดการบวก  สมบัติปิดการบวก คือ การที่เรานำจำนวนจริง 2 ตัวมาบวกกัน เราก็ยังได้ผลลัพธ์เป็นจำนวนจริงเหมือนเดิม เช่น 1 + 2 = 3 จะเห็นว่า

การเขียนบรรยาย

การเขียนบรรยาย อธิบาย พรรณนา เรียนรู้ 3 การเขียนที่สำคัญในยุคปัจจุบัน

ทักษะการเขียนอธิบาย การเขียนบรรยาย และการเขียนพรรณนา ถือว่ามีความสำคัญอย่างมากในปัจจุบัน เพราะมนุษย์นั้นมีสัญชาตญาณในการอยากรู้และหาคำตอบ ดังนั้นเราจึงไม่อาจเลี่ยงตอบคำถามใครได้ ดังนั้นการตอบคำถามหรือทำให้ผู้รับสารเข้าใจตรงกันจึงเป็นสิ่งจำเป็น บทเรียนวันนี้เราจะมาเรียนรู้เทคนิคการเขียนทั้งสามแบบว่ามีวิธีการเขียนอย่างไร ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   การเขียน   การเขียนอธิบาย   การเขียนอธิบาย หมายถึง การทำให้บุคคลอื่นเข้าใจในความจริงที่เกิดขึ้น มีกลวิธีการเขียนดังนี้ กลวิธีการเขียนอธิบาย 1. การอธิบายตามลำดับขั้น เป็นอธิบายไปทีละขั้นตอน ใช้ในการเขียนอธิบายถึงกิจกรรมหรือวิธีทำบางสิ่งบางอย่าง    

NokAcademy_Profile ม2 มารู้จักกับ (Connective Words)

 การใช้ตัวเชื่อม (Connective words)

Getting Started! มาเริ่มกันเลย   สวัสดีค่ะนักเรียน ม.3 ทุกคน วันนี้ครูจะพาไป ทบทวนงานเรื่อง  การใช้ตัวเชื่อม (Connective words) ที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วย  การใช้ตัวเชื่อมในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay

การให้เหตุผลแบบนิรนัย

การให้เหตุผลแบบนิรนัย

จากบทความที่แล้วเราได้เรียนเรื่องการให้เหตุผลแบบอุปนัยไปแล้ว บทความนี้พี่จะพูดถึงการให้เหตผลแบบนิรนัย ซึ่งแน่นอนว่ามักจะเจอในข้อสอบ O-Net แต่น้องๆไม่ต้องกังวลว่าจะทำไม่ได้ หากน้องได้อ่านบทความนี้แล้วน้องๆจะทำข้อสอบเกี่ยวกับการให้เหตุผลได้แน่นอนค่ะ

การเขียนเรียงความ

เทคนิคการเขียนเรียงความง่าย ๆ ที่จะช่วยถ่ายทอดความคิดให้เป็นขั้นตอน

การเขียนเรียงความ เป็นทักษะการเขียนที่มีสำคัญมาก เพราะเป็นการถ่ายทอดความคิดให้ออกมาอยู่ในรูปของตัวอักษร จะมีวิธีเขียนอย่างไรบ้างนั้น บทเรียนในวันนี้จะทำให้น้อง ๆ มีความรู้ความเข้าใจถึงวิธีการเขียนเรียงมากขึ้น จะเป็นอย่างไรนั้น ไปเรียนรู้พร้อมกันเลยค่ะ     เรียงความ เป็นทักษะการเขียนที่แสดงออกถึงความรู้สึกนึกคิด ความเห็น ความเข้าใจของผู้เขียน มีรูปแบบและวิธีการเขียนที่มีแบบแผน เพื่อถ่ายทอดความคิดออกมาเป็นตัวอักษรให้น่าอ่าน และยังเป็นพื้นฐานของการเขียนต่าง ๆ ไม่ว่าจะเป็นบทความหรือนวนิยายอีกด้วย โดยประเภทของการเขียนเรียงความมีดังนี้ 1. เรื่องที่เขียนเพื่อความรู้ 2. เรื่องที่เขียนเพื่อความเข้าใจ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1