สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

สารบัญ

Add LINE friends for one click to find article.

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก หรือ \Sigma  เรียกว่า ซิกมา ( Sigma ) เราใช้เพื่อลดรูปการบวกกันของตัวเลข เนื่องจากว่าบางทีเป็นการบวกของจำนวนตัวเลข 100 พจน์ ถ้ามานั่งเขียนทีละตัวก็คงจะเยอะไป เราจึงจะใช้เครื่องหมายซิกมามาใช้เพื่อประหยัดเวลาในการเขียนนั่นเอง

เช่น 1 + 2 + 3 + 4 +5  สามารถเขียนแทนด้วย สัญลักษณ์แทนการบวก

1 + 1 + 1 + 1 + 1 + 1  สามารถเขียนแทนด้วย \sum_{i=1}^{6}1

 

สูตรผลร่วม

สูตรเหล่านี้จะทำให้น้องๆประหยัดเวลาในการทำโจทย์มากๆ เนื่องจากไม่ต้องมานั่งแทน n ทีละตัว แล้วนำมาบวกกัน แต่สามารถใช้สูตรนี้ในการหาผลรวมได้เลย ดังนั้นจำสูตรเหล่านี้ไว้ดีๆนะคะ

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

\sum_{i=1}^{n}i^{3}=(\frac{n(n+1)}{6})^{2}

***สูตรข้างต้นใช้ได้กับการบวกตั้งแต่ 1 ถึง n เท่านั้น***

สมบัติที่ควรรู้เกี่ยวกับ \Sigma

สมบัติเหล่านี้จะช่วยให้น้องๆคิดเลขได้ง่ายขึ้นและประหยัดเวลาในการทำโจทย์แต่ละข้อได้เยอะมากๆ

ให้ a_n,b_n เป็นลำดับของจำนวนจริงใดๆ

1)\sum_{n=1}^{k}c=kc        โดยที่ c เป็นค่าคงที่ใดๆ

2) สัญลักษณ์แทนการบวก

3)สัญลักษณ์แทนการบวก

4)\sum ca_n=c\sum a_n  โดยที่ c เป็นจำนวนจริงใดๆ

 

ตัวอย่างเกี่ยวกับสัญลักษณ์การบวก

1)จงหาค่าของ \sum_{n=1}^{4}5

วิธีทำ จากโจทย์เราจะใช้สมบัติของซิกมาข้อที่ 1 เนื่องจาก 5 เป็นค่าคงที่ สัญลักษณ์แทนการบวก

ดังนั้นจะได้ว่า \sum_{n=1}^{4}5=4(5)=20

 

2) จงหาค่าของ \sum_{n=1}^{50}(-1)

วิธีทำ ใช้สมบัติข้อที่ 1 เนื่องจาก -1 เป็นค่าคงที่  \sum_{n=1}^{k}c=kc จะได้

สัญลักษณ์แทนการบวก

 

3) ถ้า a_1+a_2+a_3+a_4=35 จงหาค่า \sum_{n=1}^{4}5a_n

วิธีทำ จากโจทย์จะเห็นว่า สัญลักษณ์แทนการบวก 

พิจารณา \sum_{n=1}^{4}5a_n โดยใช้สมบัติข้อที่ 4 \sum ca_n=c\sum a_n

ดังนั้นจะได้ \sum_{n=1}^{4}5a_n=5\sum_{n=1}^{4}a_n และเนื่องจากเรารู้ว่า a_1+a_2+a_3+a_4=\sum_{n=1}^{4}a_n=35  

ดังนั้น \sum_{n=1}^{4}5a_n=5\sum_{n=1}^{4}a_n=5(35)=175

 

4)  ให้ \sum_{n=1}^{10}a_n=55, \sum_{n=1}^{10}b_n=27,\sum_{n=1}^{10}c_n=-22 จงหา \sum_{n=1}^{10}[5a_n-2b_n-6c_n]

วิธีทำ  เราจะพิจารณาสิ่งที่โจทย์ถามก่อน นั่นก็คือ \sum_{n=1}^{10}[5a_n-2b_n-6c_n] เราจะเห็นว่าในวงเล็บนั้นเป็นลำดับที่กำลังลบกันอยู่และจากสมบัติของซิกมาเราสามารถกระจายซิกมาเข้าไปได้(สมบัติข้อที่ 3) จะได้ว่า

สัญลักษณ์แทนการบวก

และจากสมบัติข้อที่ 4 เราสามารถดึงข้าคงที่ออกมาไว้ข้างนอกซิกมาได้ จะได้ว่า

\sum_{n=1}^{10}5a_n-\sum_{n=1}^{10}2b_n-\sum_{n=1}^{10}6c_n=5\sum_{n=1}^{10}a_n-2\sum_{n=1}^{10}b_n-6\sum_{n=1}^{10}c_n 

จะเห็นว่าเราสามารถตอบได้แล้ว เพราะเราสามารถเอาสิ่งที่โจทย์กำหนดให้มาแทนค่าลงไปได้แล้วจะได้เป็น

5\sum_{n=1}^{10}a_n-2\sum_{n=1}^{10}b_n-6\sum_{n=1}^{10}c_n=5(55)-2(27)-6(-22)=353

ดังนั้น \sum_{n=1}^{10}[5a_n-2b_n-6c_n]=353

 

5) จงหาผลบวกของ 1 + 2 + 3 + 4 +…+ 64

วิธีทำ จากโจทย์เป็นการบวกกันของจำนวนนับตั้งแต่ 1 ถึง 64  และเราสามารถเขียน 1 + 2 + 3 + 4 +…+ 64 ให้อยู่ในรูปของซิกมาได้ จะได้ว่า

1 + 2 + 3 + 4 +…+ 64 = \sum_{i=1}^{64}i 

และจากสูตร สัญลักษณ์แทนการบวก  ในโจทย์ข้อนี้ n = 64   ดังนั้นจะได้ว่า

สัญลักษณ์แทนการบวก

ดังนั้น 1 + 2 + 3 + 4 +…+ 64 = 2,080

 

6) จงหาผลบวกของ 1^2+2^2+3^2+...+10^2

วิธีทำ จากโจทย์เป็นการบวกของกำลังสองของจำนวนนับตั้งแต่ 1 ถึง 10 และเราสามารถเขียน 1^2+2^2+3^2+...+10^2 ให้อยู่ในรูปของซิกมาได้

จะได้เป็น

1^2+2^2+3^2+...+10^2=\sum_{i=1}^{10}i^2

และจากสูตร  สัญลักษณ์แทนการบวก เราจะเห็นว่า n = 10 ดังนั้นจะได้

สัญลักษณ์แทนการบวก

ดังนั้น 1^2+2^2+3^2+...+10^2 = 385

 

สรุป จากตัวอย่างข้างต้นจะเห็นว่าสมบัติของซิกมาและสูตรเกี่ยวกับผลบวกนั้นมีประโยชน์ในการแก้โจทย์อย่างมาก ทำให้ประหยัดเวลาในการคำนวณ และทำให้โจทย์ที่เหมือนจะยากนั้นง่ายขึ้นอีกด้วย ดังนั้นน้องๆอย่าลืมจำสูตรและสมบัติเหล่านี้นะคะ

 

วิดีโอเกี่ยวกับ สัญลักษณ์แทนการบวก

น้องๆสามารถเรียนรู้เพิ่มเติมเกี่ยวกับซิกมาและสมบัติของซิกมาได้จากคลิปด้านล่างนี้เลยค่ะ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article.
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

บทความนี้ ได้นำเสนอ การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก โดยที่น้องๆจะได้รู้จักกับ บทนิยามของเลขยกกำลัง ซึ่งจะทำให้น้องๆรู้จักเลขชี้กำลังและฐานของเลขยกกำลัง และสามารถหาค่าของเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวกได้ ก่อนอื่นเรามาทำความรู้จักกับเลขยกกำลังผ่านนิยามของเลขยกกำลัง ดังต่อไปนี้ บทนิยามของเลขยกกำลัง บทนิยาม  ถ้า a แทนจำนวนใด ๆ และ n แทนจำนวนเต็มบวก “a ยกกำลัง n” เขียนแทนด้วย aⁿ  มีความหมายดังนี้ a

จำนวนจริงในรูปกรณฑ์ และเลขยกกำลัง

จำนวนจริงในรูปกรณฑ์ จำนวนจริงในรูปกรณฑ์ หรือราก เขียนแทนด้วย อ่านว่า รากที่ n ของ x หรือ กรณฑ์ที่ n ของ x เราจะบอกว่า จำนวนจริง a เป็นรากที่ n ของ x ก็ต่อเมื่อ เช่น 2 เป็นรากที่

NokAcademy_Infinitives after verbs

Infinitives after verbs

Hi guys! สวัสดีค่ะนักเรียนม.5 ที่รักทุกคนวันนี้เราจะไปดูการใช้ Infinitives after verbs กันเด้อ ถ้าพร้อมแล้วก็ไปลุยกันโลดจร้า Let’s go!   ทบทวนความหมายของ “Infinitive”   Infinitive คือ   กริยารูปแบบที่ไม่ผัน ไม่เติมอะไรใดๆเลย ที่นำหน้าด้วย to (Infinitive with “to” หรือ

สถิติ (เส้นโค้งความถี่)

บทความนี้ได้รวบรวมความรู้เรื่อง สถิติ (เส้นโค้งความถี่)  ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง    ค่ากลางของข้อมูล และการวัดการกระจายของข้อมูล สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล) ⇐⇐ เส้นโค้งของความถี่ จะมีอยู่ 3 แบบ คือ เส้นโค้งปกติ เส้นโค้งเบ้ขวา และเส้นโค้งเบ้ซ้าย ซึ่งจะมีความสัมพันธ์กับค่ากลางของข้อมูล  ได้แก่ ค่าเฉลี่ยเลขคณิต (μ)   มัธยฐาน (Med) และฐานนิยม

การคูณเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

บทความนี้ ได้รวบรวมตัวอย่าง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งทำได้โดยการใช้สมบัติการคูณของเลขยกกำลัง ทั้งสามสมบัติ ก่อนจะเรียนเรื่องการคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ให้น้องๆ ไปศึกษาเรื่อง การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก สมบัติของการคูณเลขยกกำลัง  ถ้า a เป็นจำนวนใดๆ m และ n เป็นจำนวนเต็มบวก แล้ว  1)   am x an

นิราศภูเขาทอง ศึกษาตัวบทที่น่าสนใจและคุณค่าที่แฝงอยู่ในเรื่อง

  นิราศภูเขาทองเป็นหนึ่งในนิราศที่ได้รับการยกย่องว่าแต่งดีของสุนทรภู่ เป็นงานอันทรงคุณค่าที่ใช้เป็นแบบเรียนภาษาไทยในปัจจุบัน เรามาถอดคำประพันธ์ตัวบทที่น่าสนใจในนิราศภูเขาทองกันดีกว่าค่ะว่ามีบทไหนที่เด่น ๆ ควรศึกษาและจดจำไว้เพื่อไม่ให้พลาดในการทำข้อสอบ ถอดคำประพันธ์ นิราศภูเขาทอง   เนื่องจากนิราศภูเขาทองมีหลายบท ในที่นี้จะเลือกเฉพาะบทที่เด่น ๆ มาศึกษากันนะคะ เราไปดูกันที่บทแรกเลยค่ะ   ถอดคำประพันธ์ บทนี้เป็นการเปรียบเทียบการดื่มเหล้ากับความรัก เหล้าเป็นอบายมุข เมื่อดื่มเข้าไปจะทำให้มีอาการมึนเมา สติสัมปชัญญะไม่ครบถ้วน แต่เมื่อเวลาผ่านไปอาการมึนเมาเหล่านั้นก็จะหายไป แต่หากหลงมัวเมาอยู่กับความรัก ไม่ว่าจะใช้เวลาเท่าไหร่ก็หายไปง่าย ๆ  

Nockacademy web logo 3

ทดลองฟรี! รับชมคลิปบทเรียนสั้นๆ

และการสอนแบบไลฟ์สดทุกวันเพื่อให้คุณเข้าใจมากขึ้น

Nockacademy web logo 3

ทดลองฟรี! รับชมคลิปบทเรียนสั้นๆ

และการสอนแบบไลฟ์สดทุกวันเพื่อให้คุณเข้าใจมากขึ้น​