ลำดับ

ลำดับ

สารบัญ

ลำดับ

ลำดับ ( Sequence ) คือ เซตของจำนวนหรือตัวเลขที่เรียงกันเป็นระเบียบและมีเงื่อนไข เช่น ลำดับของจำนวนนับที่เพิ่มขึ้นทีละ 1 ก็จะสามารถเขียนได้เป็น

1, 2, 3, 4, … โดยตัวเลขเหล่านี้ เรียกว่า พจน์ ( Term ) เซตของลำดับจะเขีบยแทนด้วย a_{1},a_{2},a_{3},...,a_{n},...

และเราจะเรียก a_{1} ว่าพจน์ที่ 1

เรียก a_{2} ว่าพจน์ที่ 2

\vdots

เรียก a_{n} ว่าพจน์ที่ n หรือพจน์ทั่วไปหรือ พจน์สุดท้าย

ตัวอย่างของลำดับ  เช่น 1, 3, 5, 7, ….

โดเมนและเรนจ์ของลำดับ

โดเมนของลำดับคือ พจน์ของลำดับ หรือ n นั่นเอง ซึ่ง n ต้องเป็นจำนวนนับ

เรนจ์ของลำดับคือ ค่าของ a_n นั่นเอง

เช่น F = {(1,10),(2,20),(3,30)}  จะได้ว่า 

โดเมน คือ {1, 2, 3}

เรนจ์คือ {10, 20, 30}

ชนิดของ ลำดับ

ลำดับจำกัด คือ ลำดับที่สามารถระบุจำนวนพจน์ได้

เช่น 2, 4, 6, 8, … , 50  มี 25 พจน์

1, 2, 3, 4, … , n  มี n พจน์

ลำดับอนันต์ คือ ลำดับที่ไม่สามารถบอกจำนวนพจน์ได้

เช่น 1, 2, 3, …

“วิธีสังเกต”

ลำดับอนันต์จะมีจุดสามจุดอยู่หลังของลำดับเสมอ เพื่อแสดงให้เห็นว่าลำดับนี้ไปต่อได้เรื่อย ๆ ไม่มีที่สิ้นสุด

ตัวอย่างของ ลำดับ

1) ให้ ข้อ A คือ 1,4,9,16,25,…
ข้อ B คือ a_n= 16n เมื่อ n= 1,2,3,4
ข้อ C คือ a_n=3n² + 7 เมื่อ n เป็นจำนวนเต็มบวก

จะได้ว่า A  เป็นลำดับอนันต์ 

B เป็นลำดับจำกัด

C เป็นลำดับอนันต์

1) 7, 14, 21, 28, 35, …  เป็นลำดับอนันต์ ที่เพื่มขึ้นทีละ 7

2) 3, 6, 12, 24, 48  เป็นลำดับจำกัด ที่เพิ่มขึ้น 2 เท่าของพจน์ก่อนหน้า

3) 4, 9, 16, 25, 36, 49  ต้องหาสองครั้งเพราะการเพิ่มขึ้นของลำดับยังไม่เป็นระบบ

น้องจะเห็นว่าลำดับในข้อ 3 เป็นลำดับที่มีผลต่างร่วมเป็นค่าคงที่ในครั้งที่สอง หรือเพิ่มขึ้นอย่างคงที่ในครั้งที่สองนั่นเอง

จะเห็นว่าในลำดับนั้น เพิ่มขึ้นอย่างไม่เป็นระบบ คือ เพิ่มขึ้นทีละ 5, 6, 7, 8, 9 ตามลำดับ แต่ลองสังเกตดูว่า การเพิ่มขึ้นของ 5, 6,7,8,9 นั้นเพิ่มขึ้นทีละ 1 ดังนั้นจึงเป็นการเพิ่มขึ้นอย่างคงที่ในครั้งที่ 2 นั่นเอง

 

การหาพจน์ทั่วไปของลำดับ

วิธีการหาพจน์ที่ n จะแยกเป็น 3 กรณี

1) ระหว่างพจน์มีผลต่างที่เป็นค่าคงที่ นั่นก็คือ เป็นลำดับเพิ่มขึ้นหรือลดลง เป็นค่าคงที่ เช่น 8, 6, 4, 2  ( ลดลงทีละ 2 )

รูปแบบของพจน์ทั่วไปคือ a_{n}=an+b

ตัวอย่าง  หาพจน์ทั่วไปของลำดับ 1, 3, 5, 7, …

จากโจทย์ เราจะรู้ว่า a_{1}= 1, a_{2}=3

และจากสูตร a_{n}=an+b

เมื่อ n = 1 ; a_{1}=1=a(1)+b \rightarrow (1)

n = 2 ; a_{2}=3=a(3)+b \rightarrow (2)

(2) -(1) ; 2=a

แทน a_{1} ใน (1) จะได้ว่า 1=2+b

b=-1

ดังนั้น พจน์ทั่วไป ของลำดับข้างต้นคือ a_{n}=2n -1

2) ระหว่างพจน์มีอัตราส่วนร่วมเป็นค่าคงที่

รูปแบบของพจน์ทั่วไป คือ a_{n}=ar^{n}+b โดยที่ r คืออัตราส่วนร่วม

ตัวอย่าง  หาพจน์ทั่วไปของ 4, 8, 16, 32, …

จะเห็นว่าลำดับดังกล่าวเพิ่มขึ้นเป็นสองเท่า ของพจน์ก่อนหน้า

ดังนั้น r = 2 และจากโจทย์จะได้ว่า a_{1}= 4, a_{2}=8

เมื่อ n = 1 ; a_{1}=4=a(2)^{1}+b \rightarrow (1)

n = 2 ; a_{2}=8=a(2)^{2}+b \rightarrow (2)

(2) – (1) ; 4 = ( 4 – 2 )a

แทน a_{1} ใน (1) จะได้ว่า 4=2(2)+b

b=0

ดังนั้น a_{n}=2(2)^{n}=2^{n+1}

 

3) ระหว่างพจน์มีผลต่างเป็นค่าคงที่ในการหาครั้งที่ 2

รูปพจน์ทั่วไป คือ \inline a_{n}=an^{2}+bn+c

ตัวอย่าง  หาพจน์ทั่วไปของ 4, 9, 16, 25, …

เมื่อ n = 1 ; a_{1}=4=a(1)+b(1)+c \rightarrow (1)

n = 2 ; a_{2}=9=a(4)+b(2)+c \rightarrow (2)

n = 3 ; a_{3}=16=a(9)+b(3)+c \rightarrow (3)

(2)- (1) ; 5 = 3a +b\rightarrow (4)

(3) – (2) ; 7 = 5a +b\rightarrow(5)

(4)-(5) ; 2 =2a \rightarrow a=1

แทน a = 1 ใน (4) จะได้ 5=3+b\rightarrow b=2

แทน a = 1 และ b = 2 ใน (1) จะได้ 4 = 1 + 2 + c

c = 1

ดังนั้น รูปพจน์ทั่วไปคือ a^{n}=n^{2}+2n+1

ตัวอย่างของลำดับ

1.) จงหาว่าพจน์หลังกับพจน์หน้ามีความสัมพันธ์กันอย่างไร

1.1) 8, 6, 4, 2, ….

ตอบ พจน์หลังลดลงจากพจน์หน้าทีละ 2

1.2) 5, 10, 15, 20, …

ตอบ พจน์หลังเพิ่มขึ้นจากพจน์หน้าทีละ 5

 

2.) หา 4 พจน์ถัดไปของลำดับต่อไปนี้

2.1) 2, 5, 8, 11, …

วิธีทำ จากโจทย์จะเห็นว่าเป็นลำดับที่เพิ่มขึ้นทีละ 3

ดังนั้น 4 พจน์ถัดไปคือ 11+3 = 14, 14+3 = 17, 17+3 = 20, 20+3=23

นั่นคือ 14, 17, 20, 23

 

2.1)  200, 190, 170, 140,…

วิธีทำ จากโจทย์จะเห็นว่า พจน์ 2 ลดลงจากพจน์แรก 10 พจน์ 3 ลดลงจากพจน์ 2 20 และพจน์ 4 ลดลงจาดพจน์ 3 30

เราจะได้ลำดับใหม่ซึ่งเป็นลำดับของผลต่างระหว่างพจน์ ดังนี้ 10, 20, 30,… ดังนั้นอีก 3 พจน์ถัดไปควรจะเป็น 40, 50, 60 ตามลำดับ

ดังนั้นจะได้ว่า พจน์ที่ 5 ของลำดับในโจทย์ข้างต้น ควรจะน้อยกว่าพจน์ที่ 4 ไป 40 จะได้ว่า พจน์ที่ 5 คือ 140-40=100

พจน์ที่6 ต้องน้อยกว่าพจน์ที่ 5 ไป 50 ดังนั้น พจน์ที่ 6 คือ 100-50=50

พจน์ที่7 ต้องน้อยกว่าพจน์ที่ 6 อยู่ 60 ดังนั้น พจน์ที่7 คือ 50-60= -10

พจน์ที่ 8 ต้องน้อยกว่า พจน์ที่7 อยู่ 70 ดังนั้นพจน์ที่8 คือ -10 – 70 = -80

ดังนั้น 4 พจน์ถัดไปของลำดับ 200, 190, 170, 140,… คือ 100, 50, -10, -80 ตามลำดับ

3.) จงเขียน 5 พจน์แรกของลำดับต่อไปนี้

3.1) a_n=2n-1

วิธีทำ

แทน n=1 จะได้ว่า a_1=2(1)-1=1

n=2 จะได้ a_2=2(2)-1=3

n=3 จะได้ a_3=2(3)-1=5

n=4จะได้ a_4=2(4)-1=7

n=5จะได้ a_5=2(5)-1=9

จากการแทนค่า n ไปแล้ว เราจะได้ลำดับ 5 พจน์แรกดังนี้ 1, 3, 5, 7, 9

 

3.2) a_n=\left\{\begin{matrix} n+1 : n<3\\ 2n :\geq 3 \end{matrix}\right.

วิธีทำ จากโจทย์จะเห็นว่า ถ้า n น้อยกว่า 3 ดังนั้นเราจะใช้ n +1 ในการหาพจน์ที่ 1 และพจน์ที่ 2

และเราจะใช้ 2n ในการหาพจน์ที่ 3 ถึงพจน์ที่ 5

จะได้5พจน์แรกของลำดับดังนี้ 1+1, 2+1, 2(3), 2(4), 2(5) นั่นคือ 2, 3, 6, 8, 10

 

 

วิดีโอเพิ่มเติมเกี่ยวกับความหมายของลำดับ

0
NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook
การเลื่อนขนาน

การเลื่อนขนาน

สำหรับการแปลงทางเรขาคณิตในบทนี้จะกล่าวถึงการแปลงที่จะได้ภาพที่มีรูปร่างเหมือนกันและขนาดเดียวกันกับรูปต้นแบบเสมอ โดยใช้การเลื่อนขนาน

การชักชวน และแนะนำในภาษาอังกฤษ

วิธีการพูดเสนอแนะ ชักชวน และแนะนำในภาษาอังกฤษ

  สวัสดีค่ะนักเรียน ม.1 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูวิธีการพูดให้ข้อเสนอแนะ ชักชวน และแนะนำกันค่ะซึ่งในการเสนอแนะ หรือชักชวนนั้น ผู้พูดจะแสดงความคิดเห็นเสนอแนะ เพื่อให้กระทำสิ่งใดสิ่งหนึ่งด้วยกัน มีการใช้ภาษาหลายระดับ และใช้รูปประโยคหลายชนิด เช่นเดียวกับการพูดในความหมายต่างๆ ที่ผ่านมาเราจึงต้องใช้รูปประโยคต่างๆ เช่นประโยคบอกเล่า คำสั่ง ชักชวน เพื่อให้ผู้ฟังทำตาม รวมถึงเทคนิคการตอบรับและปฏิเสธ ดังในตัวอย่างรูปแบบประโยคด้านล่างนะคะ   1. ประโยคบอกเล่า (Statement)  

กาพย์ยานี 11

เรียนรู้เรื่องกาพย์ยานี 11 พร้อมเคล็ดลับการแต่งกาพย์แบบง่ายดาย

บทนำ สวัสดีน้อง ๆ ทุกคน กลับมาพบกันอีกครั้งกับบทเรียนภาษาไทยที่ได้ทั้งสาระความรู้ และความสนุกไปพร้อม ๆ กัน เชื่อว่า น้อง ๆ หลายคนคงเคยได้อ่านหรือได้เรียนเกี่ยวกับการแต่งกาพย์กลอนกันมาบ้างแล้ว ซึ่งหนึ่งในนั้นก็คือ ‘กาพย์ยานี 11’ และต้องบอกว่ากาพย์ชนิดนี้มีวรรณคดีหลาย ๆ เรื่องที่ใช้ในการแต่งบทประพันธ์ หรือเราเองก็มักจะได้เริ่มการแต่งกาพย์ชนิดนี้ก่อนเป็นอันดับแรก ๆ ด้วยรูปแบบของฉันทลักษณ์ที่เข้าใจง่ายไม่ซับซ้อน ไม่ได้กำหนดสระหรือคำเป็นคำตายแต่อย่างใด เพราะฉะนั้น เพื่อเป็นการทบทวน และเพิ่มเติมความรู้ให้กับน้อง

Past Tense ที่มี Time Expressions ในประโยคบอกเล่าและปฏิเสธ

สวัสดีค่ะนักเรียน ม.2 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิคและวิธีการใช้ ” Past Tense ที่มี Time Expressions ในประโยคบอกเล่าและปฏิเสธ” ซึ่งเมื่อเล่าถึงเวลาในอดีตส่วนใหญ่แล้วเรามักเจอคำว่า yesterday (เมื่อวานนี้), 1998 (ปี ค.ศ. ที่ผ่านมานานแล้ว), last month (เดือนที่แล้ว)  และกลุ่มคำอื่นๆ ที่กำกับเวลาในอดีต ซึ่งเราจะเจอ Past

การดำเนินการของเซต

การดำเนินการของเซตประกอบไปด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต และผลต่าง เรื่องนี้เป็นอีกหนึ่งเรื่องที่เราจะได้ใช้ในบทต่อๆไป เรื่องนี้จึงค่อนข้างมีประโยชน์ในเรื่องของการเรียนเนื้อหาบทต่อไปง่ายขึ้น

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้