ลำดับเลขคณิต

ลำดับเลขคณิต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ลำดับเลขคณิต

ลำดับเลขคณิต คือลำดับที่มีค่าเพิ่มขึ้นหรือลดลงอย่างคงที่ โดยจำนวนที่เพิ่มขึ้นหรือลดลงนี้เราเรียกว่าผลต่างร่วม แทนด้วยสัญลักษณ์ d  โดยที่ d = พจน์ขวา – พจน์ซ้าย

การเขียนลำดับเราจะเขียนแทนด้วย  ลำดับเลขคณิต  โดยที่ a_n คือพจน์ทั่วไปหรือเรียกอีกอย่างว่า พจน์สุดท้ายนั่นเอง

 

การหาพจน์ทั่วไปของลำดับเลขคณิต

พจน์ที่1 \rightarrow n = 1      ;       a_{1}=a_{1}

พจน์ที่2 \rightarrow n = 2     ;       a_{2}=a_{1}+d

พจน์ที่3 \rightarrow n = 3     ;       a_{3}=a_{2}+d+d =a_{2}+2d

                                              =a_{1}+d+d

.                                              =a_{1}+2d

พจน์ที่ n \rightarrow n = n     ;      a_{n}=a_{n-1}+d

ลำดับเลขคณิต

ดังนั้น  สูตรในการหาพจน์ทั่วไปของลำดับเลขคณิต

ลำดับเลขคณิต

 

วิธีการแก้โจทย์ปัญหาที่เกี่ยวกับลำดับเลขคณิต

  1. ต้องรู้ว่าโจทย์ถามหาอะไร จากนั้นเขียนสิ่งที่โจทย์ต้องการไว้ เช่น โจทย์ต้องการหาพจน์ที่ 5 เราจะเขียน a_5=a_1+4d จากนั้นเราก็จะรู้แล้วว่าเราต้องหาอะไรเพื่อให้สมการมันสมบูรณ์และได้คำตอบที่ต้องการ
  2. ดูว่าโจทย์ให้อะไรมาบ้าง โจทย์บางโจทย์อาจจะไม่ให้มาแบบตรงๆ เช่น 1, 3, 5,7,… สิ่งที่โจทย์ให้มาคือ a_1 และ d จะเห็นว่าโจทย์ไม่ได้ให้ d มาตรงๆแต่เราต้องสังเกตเอง
  3. ใช้สิ่งที่โจทย์มา ในการหาสิ่งที่เราต้องการในข้อ 1.

จากข้อ 1-3 ถ้าทำครบตามนี้เราก็จะได้คำตอบตามต้องการแล้ว ทั้งนี้ต้องอาศัยการสังเกต และการฝึกทำบ่อยๆให้ชินด้วย

 

ตัวอย่างลำดับเลขคณิต

โจทย์ลำดับเลขคณิตนั้น สามารถพลิกแพลงได้เยอะมาก ไม่ว่าจะเป็น หาพจน์ที่ n หาว่าค่าที่กำหนดให้นั้นคือพจน์ที่เท่าไหร่ และอีกมากมาย เราไปดูตัวอย่างกันเลย

1. จงหาพจน์ทั่วไป (a_{n}) ของ 5, 7, 9, 11, …

จากโจทย์ \inline a_{1}=5         \inline d=7-5=2

จากสูตร a_{n}=a_{1}+(n-1)d

จะได้ a_{n}=5+(n-1)(2)

                =5+2n-2

                =3+2n

ดังนั้น a_{n}=3+2n

2. ให้ a และ b เป็นจำนวนจริงบวก ถ้า a, 10, b, 20, … เป็นลำดับเลขคณิตจงหาพจน์ที่ 10 , a และ b

จากสูตร a_{n}=a_{1}+(n-1)d

10=a_{1}+d       \cdots (1)

20=a_{1}+3d       \cdots (2)

(2) – (1) : 10=2d

d=5

แทน \inline d=5 ใน (1) : \inline 10=a_{1}+5

\inline a_{1}=5

\therefore a=5 และ b=5+2(5)=15

ดังนั้น a_{10}=5+9(5)

                  =50

3. ถ้าพจน์ที่ 5 และพจน์ที่ 10 ของลำดับเลขคณิตเป็น 14 และ 29 ตามลำดับ แล้วพจน์ที่ 99 เท่ากับเท่าใด

จากสูตร a_{n}=a_{1}+(n-1)d

พจน์ที่ 5 จะได้ว่า  \inline a_{5}=14=a_{1}+4d       \cdots (1)

พจน์ที่ 10 จะได้ว่า  \inline a_{10}=29=a_{1}+9d       \cdots (2)

(2) – (1) : 15=5d

d=3

แทน \inline d=3 ใน (1) : \inline 14=a_{1}+4(3)

\inline a_{1}=14-12=5

\therefore a_{1}=2 และ \inline d=3

พจน์ที่ 99

a_{99}=a_{1}+98(d)

=2+98(3)

=296

4. ลำดับ -24, -15, -6, 3, 12, 21, … , 1776 มีกี่พจน์ (O-net 54)

จากโจทย์ d=-15-(-24)=9 และ a_{1}=-24

“พจน์สุดท้าย (พจน์ที่ n ) มีค่าเท่ากับ 1776”

หา n โดยที่ a_{n}=1776

1776=-24+(n-1)(9)

1776=-24+9n-9

1776+33=9n

n=\frac{1809}{9}=201

ดังนั้น ลำดับดังกล่าวมี 201 พจน์

5. พจน์ที่ 60 ของลำดับเลขคณิต x + 2 , 2x – 5, 2x + 2, …เท่ากับเท่าไหร่

จากโจทย์สิ่งที่ต้องการหาคือ a_{60}

สื่งที่โจทย์ให้มาคือ พจน์แรก และ

สิ่งแรกที่ต้องทำคือหา x โดยใช้สูตรลำดับเลขคณิต

จาก d = พจน์ซ้าย – พจน์ขวา

d = 2x – 5 – (x + 2) = 2x + 2 – (2x – 5)

x – 7 = 7

x = 14

เมื่อนำค่า x ที่หาได้ไปแทน จะได้ลำดับเลขคณิต ดังนี้ 16, 23, 30,…

จากลำดับข้างต้นจะได้ d = 23 – 16 = 7

หา พจน์ที่ 60

a_{60}=16+59(7)=16+413=429

ดังนั้น พจน์ที่ 60 เท่ากับ 429

6. ลำดับเลขคณิต 4 จำนวนที่อยู่กลางระหว่าง 4 กับ 49 คือจำนวนใดบ้าง

ลองเขียนอนุกรมจะได้ 4, a, b, c, d, 49

จากโจทย์สิ่งที่เรารู้คือ พจน์แรก และพจน์สุดท้าย ดังนั้นเราามารถหา d จากพจน์สุดท้ายได้ โดยใช้สูตรลำดับเลขคณิต

ได้เป็น 

49 = 4 + 5d (เนื่องจาก 49 คือพจน์ที่ 6 ดังนั้น n -1 = 5)

45 = 5d

d = 9

เขียนเป็นลำดับเลขคณิตได้เป็น 4, 13, 22, 31, 40, 49

ดังนั้น 4 พจน์ที่อยู่กลางระหว่าง 4 กับ 29 คือ 13, 22, 31, 40 ตามลำดับ

 

ตัวอย่างโจทย์ปัญหาเกี่ยวกับ ลำดับเลขคณิต

1.) แป้งกู้เงินมาจำนวนหนึ่ง โดยจ่ายเงินเดือนแรก 200 บาท และเดือนถัดไปแป้งต้องจ่ายเพิ่มทุกเดือนเดือนละ 50 บาท หลังจากชำระหมดพบว่าเดือนสุดท้ายแป้งจ่ายเงินไป 950 บาท แป้งจ่ายเงินไปทั้งสิ้นกี่เดือน

วิธีทำ

1. หาว่าโจทย์ต้องการอะไร

จะเห็นว่า โจทย์ถามว่าจ่ายเงินไปกี่เดือน นั่นก็คือหาจำนวนเดือน หรือ หา n นั่นเอง

เราจะหา n ได้จากสูตร ลำดับเลขคณิต ดังนั้นเราต้องหา a_n,a_1 และ d

2. ดูว่าโจทย์ให้อะไรมาบ้าง

จากโจทย์ สามารถเขียนได้เป็น 200, 250, 300,…, 950

จะเห็นว่า โจทย์ให้ a_1=200 , d = 50 และ a_n=950

3. นำข้อ 2 ไปเติมในสูตรที่เราเขียนไว้ จะได้ว่า

a_n=a_1+(n-1)d

950=200+(n-1)(50)

950=200+50n – 50

950 = 150 + 50n

800 = 50n

n      =  16

ดังนั้น แป้งจ่ายเงินไปทั้งหมด 16 เดือน

 

2.) แป้งมีเงินในเก็บ 20 บาท และจะเก็บเพิ่มทุกวันวันละ 3 บาท ปริมมีเงินในธนาคาร 300 บาท และจะฝากเงินเพิ่มวันละ 20 บาททุกวัน ในวันที่ แป้งมีเงินในกระปุก 44 บาท ปริมจะมีเงินในธนาคารกี่บาท

วิธีทำ 1. โจทย์ต้องการหา จำนวนเงินของปริมในวันที่(n)แป้งมีเงิน 44 บาท นั่นคือ เราต้องหาจำนวนวันที่แป้งมีเงิน 44 บาท (หา n) จากนั้น หาว่าปริมมีเงินเท่าไหร่ในวันที่ n

2. สิ่งที่โจทย์ให้มา

20, 23, 26, …, 44 (การเก็บเงินของแป้ง) d = 3

300, 320,340, … (การเก็บเงินในธนาคารของปริม) d = 20

3. นำข้อมูลจากข้อ 2 มาแก้โจทย์

หาว่า วันที่แป้งมีเงิน 44 บาท คือวันที่เท่าไหร่

44=20+(n-1)(3) (สูตรลำดับเลขคณิต)

44=20+3n -3

44=17 + 3n

27 = 3n

n = 9

ดังนั้น วันที่ 9 แป้งมีเงินเก็บ 44 บาท

จากนั้นเราจะหาว่า วันที่ 9 ปริมมีเงินเก็บเท่าไหร่โดยใช้สูตรลำดับเลขคณิต

a_9=300+(8-1)(20)

a_9=300+7(20)=300+140=440

ดังนั้นวันที่แป้งมีเงินเก็บ 44 บาท ปริมจะมีเงินทั้งหมด 440 บาท

 

 

 

วิดีโอเพิ่มเติมเกี่ยวกับลำดับเลขคณิต

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

นิราศภูเขาทอง ศึกษาตัวบทที่น่าสนใจและคุณค่าที่แฝงอยู่ในเรื่อง

  นิราศภูเขาทองเป็นหนึ่งในนิราศที่ได้รับการยกย่องว่าแต่งดีของสุนทรภู่ เป็นงานอันทรงคุณค่าที่ใช้เป็นแบบเรียนภาษาไทยในปัจจุบัน เรามาถอดคำประพันธ์ตัวบทที่น่าสนใจในนิราศภูเขาทองกันดีกว่าค่ะว่ามีบทไหนที่เด่น ๆ ควรศึกษาและจดจำไว้เพื่อไม่ให้พลาดในการทำข้อสอบ ถอดคำประพันธ์ นิราศภูเขาทอง   เนื่องจากนิราศภูเขาทองมีหลายบท ในที่นี้จะเลือกเฉพาะบทที่เด่น ๆ มาศึกษากันนะคะ เราไปดูกันที่บทแรกเลยค่ะ   ถอดคำประพันธ์ บทนี้เป็นการเปรียบเทียบการดื่มเหล้ากับความรัก เหล้าเป็นอบายมุข เมื่อดื่มเข้าไปจะทำให้มีอาการมึนเมา สติสัมปชัญญะไม่ครบถ้วน แต่เมื่อเวลาผ่านไปอาการมึนเมาเหล่านั้นก็จะหายไป แต่หากหลงมัวเมาอยู่กับความรัก ไม่ว่าจะใช้เวลาเท่าไหร่ก็หายไปง่าย ๆ  

ประโยคในภาษาไทย

ทริคสังเกต ประโยคในภาษาไทย รู้ไว้ไม่สับสน

  น้อง ๆ หลายคนคงจะเคยสับสนและมีข้อสงสัยเกี่ยวกับประโยคในภาษาไทยกันมาไม่มากก็น้อย ทำไมอยู่ดี ๆ เราถึงไม่เข้าใจประโยคภาษาไทยที่พูดกันอยู่ทุกวันไปได้นะ? แต่ไม่ต้องกังวลไปนะคะ บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ กลับไปทบทวนเกี่ยวกับเรื่องประโยคอีกครั้ง พร้อมเรียนรู้เคล็ดลับการสังเกตประโยคง่าย ๆ จะเป็นอย่างไร ไปดูพร้อมกันเลยค่ะ   ความหมายของประโยค   ประโยค เป็นหน่วยทางภาษาที่เกิดจากการนำคำหลาย ๆ คำ หรือกลุ่มคำ มาเรียงต่อกันอย่างเป็นระบบ มีความสัมพันธ์กัน

NokAcademy_ ม.5 M6 Gerund

Gerund พร้อมแนวข้อสอบ ม.6

  สวัสดีค่ะนักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” กันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม นั่นเองจร้า

แนะนำอสมการเชิงเส้นตัวแปรเดียว

แนะนำอสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการ แนะนำอสมการเชิงเส้นตัวแปรเดียว ซึ่งอสมการ เป็นประโยคที่แสดงถึงการไม่เท่ากัน โดยมีวิธีการหาคำตอบคล้ายๆกับสมการ น้องๆสามารถศึกษาบทความเรื่องโจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว เพื่อศึกษาวิธีการแก้สมการและนำมาประยุกต์ใช้กับการแก้อสมการเพิ่มเติมได้ที่  ⇒⇒โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว⇐⇐ แนะนำอสมการเชิงเส้นตัวแปรเดียว        อสมการ (inequality) เป็นประโยคที่แสดงถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  <, >, ≤, ≥ หรือ ≠  แสดงความสัมพันธ์         อสมการเชิงเส้นตัวแปรเดียว

wh-questions + was, were

การใช้ Wh-questions  with  was, were

สวัสดีค่ะนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “การใช้ Wh-questions  with  was, were (Verb to be in the past)” ไปลุยกันเลยจร้า Sit back, relax, and enjoy the lesson! —นั่งพิงหลังชิวๆ ทำใจสบายๆ แล้วไปสนุกกับบทเรียนกันจร้า—  

เรียนรู้เรื่องกาพย์ยานี 11 พร้อมเคล็ดลับการแต่งกาพย์แบบง่ายดาย

บทนำ สวัสดีน้อง ๆ ทุกคน กลับมาพบกันอีกครั้งกับบทเรียนภาษาไทยที่ได้ทั้งสาระความรู้ และความสนุกไปพร้อม ๆ กัน เชื่อว่า น้อง ๆ หลายคนคงเคยได้อ่านหรือได้เรียนเกี่ยวกับการแต่งกาพย์กลอนกันมาบ้างแล้ว ซึ่งหนึ่งในนั้นก็คือ ‘กาพย์ยานี 11’ และต้องบอกว่ากาพย์ชนิดนี้มีวรรณคดีหลาย ๆ เรื่องที่ใช้ในการแต่งบทประพันธ์ หรือเราเองก็มักจะได้เริ่มการแต่งกาพย์ชนิดนี้ก่อนเป็นอันดับแรก ๆ ด้วยรูปแบบของฉันทลักษณ์ที่เข้าใจง่ายไม่ซับซ้อน ไม่ได้กำหนดสระหรือคำเป็นคำตายแต่อย่างใด เพราะฉะนั้น เพื่อเป็นการทบทวน และเพิ่มเติมความรู้ให้กับน้อง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1