ลำดับเลขคณิต

ลำดับเลขคณิต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ลำดับเลขคณิต

ลำดับเลขคณิต คือลำดับที่มีค่าเพิ่มขึ้นหรือลดลงอย่างคงที่ โดยจำนวนที่เพิ่มขึ้นหรือลดลงนี้เราเรียกว่าผลต่างร่วม แทนด้วยสัญลักษณ์ d  โดยที่ d = พจน์ขวา – พจน์ซ้าย

การเขียนลำดับเราจะเขียนแทนด้วย  ลำดับเลขคณิต  โดยที่ a_n คือพจน์ทั่วไปหรือเรียกอีกอย่างว่า พจน์สุดท้ายนั่นเอง

 

การหาพจน์ทั่วไปของลำดับเลขคณิต

พจน์ที่1 \rightarrow n = 1      ;       a_{1}=a_{1}

พจน์ที่2 \rightarrow n = 2     ;       a_{2}=a_{1}+d

พจน์ที่3 \rightarrow n = 3     ;       a_{3}=a_{2}+d+d =a_{2}+2d

                                              =a_{1}+d+d

.                                              =a_{1}+2d

พจน์ที่ n \rightarrow n = n     ;      a_{n}=a_{n-1}+d

ลำดับเลขคณิต

ดังนั้น  สูตรในการหาพจน์ทั่วไปของลำดับเลขคณิต

ลำดับเลขคณิต

 

วิธีการแก้โจทย์ปัญหาที่เกี่ยวกับลำดับเลขคณิต

  1. ต้องรู้ว่าโจทย์ถามหาอะไร จากนั้นเขียนสิ่งที่โจทย์ต้องการไว้ เช่น โจทย์ต้องการหาพจน์ที่ 5 เราจะเขียน a_5=a_1+4d จากนั้นเราก็จะรู้แล้วว่าเราต้องหาอะไรเพื่อให้สมการมันสมบูรณ์และได้คำตอบที่ต้องการ
  2. ดูว่าโจทย์ให้อะไรมาบ้าง โจทย์บางโจทย์อาจจะไม่ให้มาแบบตรงๆ เช่น 1, 3, 5,7,… สิ่งที่โจทย์ให้มาคือ a_1 และ d จะเห็นว่าโจทย์ไม่ได้ให้ d มาตรงๆแต่เราต้องสังเกตเอง
  3. ใช้สิ่งที่โจทย์มา ในการหาสิ่งที่เราต้องการในข้อ 1.

จากข้อ 1-3 ถ้าทำครบตามนี้เราก็จะได้คำตอบตามต้องการแล้ว ทั้งนี้ต้องอาศัยการสังเกต และการฝึกทำบ่อยๆให้ชินด้วย

 

ตัวอย่างลำดับเลขคณิต

โจทย์ลำดับเลขคณิตนั้น สามารถพลิกแพลงได้เยอะมาก ไม่ว่าจะเป็น หาพจน์ที่ n หาว่าค่าที่กำหนดให้นั้นคือพจน์ที่เท่าไหร่ และอีกมากมาย เราไปดูตัวอย่างกันเลย

1. จงหาพจน์ทั่วไป (a_{n}) ของ 5, 7, 9, 11, …

จากโจทย์ \inline a_{1}=5         \inline d=7-5=2

จากสูตร a_{n}=a_{1}+(n-1)d

จะได้ a_{n}=5+(n-1)(2)

                =5+2n-2

                =3+2n

ดังนั้น a_{n}=3+2n

2. ให้ a และ b เป็นจำนวนจริงบวก ถ้า a, 10, b, 20, … เป็นลำดับเลขคณิตจงหาพจน์ที่ 10 , a และ b

จากสูตร a_{n}=a_{1}+(n-1)d

10=a_{1}+d       \cdots (1)

20=a_{1}+3d       \cdots (2)

(2) – (1) : 10=2d

d=5

แทน \inline d=5 ใน (1) : \inline 10=a_{1}+5

\inline a_{1}=5

\therefore a=5 และ b=5+2(5)=15

ดังนั้น a_{10}=5+9(5)

                  =50

3. ถ้าพจน์ที่ 5 และพจน์ที่ 10 ของลำดับเลขคณิตเป็น 14 และ 29 ตามลำดับ แล้วพจน์ที่ 99 เท่ากับเท่าใด

จากสูตร a_{n}=a_{1}+(n-1)d

พจน์ที่ 5 จะได้ว่า  \inline a_{5}=14=a_{1}+4d       \cdots (1)

พจน์ที่ 10 จะได้ว่า  \inline a_{10}=29=a_{1}+9d       \cdots (2)

(2) – (1) : 15=5d

d=3

แทน \inline d=3 ใน (1) : \inline 14=a_{1}+4(3)

\inline a_{1}=14-12=5

\therefore a_{1}=2 และ \inline d=3

พจน์ที่ 99

a_{99}=a_{1}+98(d)

=2+98(3)

=296

4. ลำดับ -24, -15, -6, 3, 12, 21, … , 1776 มีกี่พจน์ (O-net 54)

จากโจทย์ d=-15-(-24)=9 และ a_{1}=-24

“พจน์สุดท้าย (พจน์ที่ n ) มีค่าเท่ากับ 1776”

หา n โดยที่ a_{n}=1776

1776=-24+(n-1)(9)

1776=-24+9n-9

1776+33=9n

n=\frac{1809}{9}=201

ดังนั้น ลำดับดังกล่าวมี 201 พจน์

5. พจน์ที่ 60 ของลำดับเลขคณิต x + 2 , 2x – 5, 2x + 2, …เท่ากับเท่าไหร่

จากโจทย์สิ่งที่ต้องการหาคือ a_{60}

สื่งที่โจทย์ให้มาคือ พจน์แรก และ

สิ่งแรกที่ต้องทำคือหา x โดยใช้สูตรลำดับเลขคณิต

จาก d = พจน์ซ้าย – พจน์ขวา

d = 2x – 5 – (x + 2) = 2x + 2 – (2x – 5)

x – 7 = 7

x = 14

เมื่อนำค่า x ที่หาได้ไปแทน จะได้ลำดับเลขคณิต ดังนี้ 16, 23, 30,…

จากลำดับข้างต้นจะได้ d = 23 – 16 = 7

หา พจน์ที่ 60

a_{60}=16+59(7)=16+413=429

ดังนั้น พจน์ที่ 60 เท่ากับ 429

6. ลำดับเลขคณิต 4 จำนวนที่อยู่กลางระหว่าง 4 กับ 49 คือจำนวนใดบ้าง

ลองเขียนอนุกรมจะได้ 4, a, b, c, d, 49

จากโจทย์สิ่งที่เรารู้คือ พจน์แรก และพจน์สุดท้าย ดังนั้นเราามารถหา d จากพจน์สุดท้ายได้ โดยใช้สูตรลำดับเลขคณิต

ได้เป็น 

49 = 4 + 5d (เนื่องจาก 49 คือพจน์ที่ 6 ดังนั้น n -1 = 5)

45 = 5d

d = 9

เขียนเป็นลำดับเลขคณิตได้เป็น 4, 13, 22, 31, 40, 49

ดังนั้น 4 พจน์ที่อยู่กลางระหว่าง 4 กับ 29 คือ 13, 22, 31, 40 ตามลำดับ

 

ตัวอย่างโจทย์ปัญหาเกี่ยวกับ ลำดับเลขคณิต

1.) แป้งกู้เงินมาจำนวนหนึ่ง โดยจ่ายเงินเดือนแรก 200 บาท และเดือนถัดไปแป้งต้องจ่ายเพิ่มทุกเดือนเดือนละ 50 บาท หลังจากชำระหมดพบว่าเดือนสุดท้ายแป้งจ่ายเงินไป 950 บาท แป้งจ่ายเงินไปทั้งสิ้นกี่เดือน

วิธีทำ

1. หาว่าโจทย์ต้องการอะไร

จะเห็นว่า โจทย์ถามว่าจ่ายเงินไปกี่เดือน นั่นก็คือหาจำนวนเดือน หรือ หา n นั่นเอง

เราจะหา n ได้จากสูตร ลำดับเลขคณิต ดังนั้นเราต้องหา a_n,a_1 และ d

2. ดูว่าโจทย์ให้อะไรมาบ้าง

จากโจทย์ สามารถเขียนได้เป็น 200, 250, 300,…, 950

จะเห็นว่า โจทย์ให้ a_1=200 , d = 50 และ a_n=950

3. นำข้อ 2 ไปเติมในสูตรที่เราเขียนไว้ จะได้ว่า

a_n=a_1+(n-1)d

950=200+(n-1)(50)

950=200+50n – 50

950 = 150 + 50n

800 = 50n

n      =  16

ดังนั้น แป้งจ่ายเงินไปทั้งหมด 16 เดือน

 

2.) แป้งมีเงินในเก็บ 20 บาท และจะเก็บเพิ่มทุกวันวันละ 3 บาท ปริมมีเงินในธนาคาร 300 บาท และจะฝากเงินเพิ่มวันละ 20 บาททุกวัน ในวันที่ แป้งมีเงินในกระปุก 44 บาท ปริมจะมีเงินในธนาคารกี่บาท

วิธีทำ 1. โจทย์ต้องการหา จำนวนเงินของปริมในวันที่(n)แป้งมีเงิน 44 บาท นั่นคือ เราต้องหาจำนวนวันที่แป้งมีเงิน 44 บาท (หา n) จากนั้น หาว่าปริมมีเงินเท่าไหร่ในวันที่ n

2. สิ่งที่โจทย์ให้มา

20, 23, 26, …, 44 (การเก็บเงินของแป้ง) d = 3

300, 320,340, … (การเก็บเงินในธนาคารของปริม) d = 20

3. นำข้อมูลจากข้อ 2 มาแก้โจทย์

หาว่า วันที่แป้งมีเงิน 44 บาท คือวันที่เท่าไหร่

44=20+(n-1)(3) (สูตรลำดับเลขคณิต)

44=20+3n -3

44=17 + 3n

27 = 3n

n = 9

ดังนั้น วันที่ 9 แป้งมีเงินเก็บ 44 บาท

จากนั้นเราจะหาว่า วันที่ 9 ปริมมีเงินเก็บเท่าไหร่โดยใช้สูตรลำดับเลขคณิต

a_9=300+(8-1)(20)

a_9=300+7(20)=300+140=440

ดังนั้นวันที่แป้งมีเงินเก็บ 44 บาท ปริมจะมีเงินทั้งหมด 440 บาท

 

 

 

วิดีโอเพิ่มเติมเกี่ยวกับลำดับเลขคณิต

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ความน่าจะเป็น

ความน่าจะเป็น

บทความนี้จะแนะนำให้รู้จักกับ ความน่าจะเป็น ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ รวมถึงคำที่เกี่ยวข้องกับความน่าจะเป็น เช่นการทดลองสุ่ม ปริภูมิตัวอย่าง และเหตุการณ์ ดังต่อไปนี้ ความน่าจะเป็น ความน่าจะเป็น (Probability)  เป็นจำนวนที่ใช้เพื่อบอกโอกาสที่เหตุการณ์หนึ่ง ๆ จะเกิดขึ้น ซึ่งมี 3 ลักษณะ คือ ไม่เกิดขึ้นอย่างแน่นอนจะมีค่าความน่าจะเป็นเท่ากับ 0 อาจจะเกิดขึ้นหรือไม่ก็ได้ จะมีค่าความน่าจะเป็นอยู่ระหว่าง 0 กับ 1

การหารทศนิยมในระดับชั้นป.5

บทความนี้จะกล่าวถึงหลักการหารทศนิยม 2 รูปแบบก็คือ การหารทศนิยมด้วยจำนวนเต็ม และการหารทศนิยมด้วยทศนิยม หลังจากที่น้องๆ ได้อ่านบทความนี้แล้ว รับรองว่าจะทำให้เข้าใจการหารทศนิยมได้มากขึ้นและสามารถนำวิธีคิดไปแก้โจทย์การหารทศนิยมได้

การบอกลักษณะต่างๆ โดยใช้คำคุณศัพท์ Profile

การบอกลักษณะต่างๆโดยใช้คำคุณศัพท์

สวัสดีค่ะนักเรียนชั้นม.3 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิค การบอกลักษณะต่างๆโดยใช้คำคุณศัพท์ (Descriptive Adjective) กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า    ความหมายของคำคุณศัพท์     คำคุณศัพท์หรือ Adjective มีตัวย่อคือ Adj.  ทำหน้าที่ขยายคำนามหรือสรรพนามที่อยู่ในประโยค คำนามหรือสรรพนาม ณ ที่นี้ ก็คือ คน สัตว์ สิ่งของ สถานที่

พญาช้างผู้เสียสละ

ทำความรู้จักกับพญาช้างผู้เสียสละนิทานธรรมะจรรโลงใจ

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคน กลับมาพบกันอีกครั้งในวิชาภาษาไทยแสนสนุก ซึ่งวันนี้เราจะพาทุกคนมาเปลี่ยนบรรยากาศกันด้วยการมาอ่านนิทานชาดกเรื่อง พญาช้างผู้เสียสละ เป็นเรื่องราวของพระพุทธเจ้าเมื่อครั้งที่ได้ลงมาเกิดเป็นพญาช้างรูปร่างงดงาม ต้องบอกว่าเรื่องราวในนิทานชาดกเรื่องนี้นอกจากจะทำให้น้อง ๆ สนุกไปกับเนื้อเรื่องแล้วก็ยังมอบคติสอนใจให้กับน้อง ๆ ได้ไม่น้อยเลย เพราะฉะนั้นถ้าทุกคนพร้อมแล้วไปเข้าสู่บทเรียนกันเลย ภูมิหลังตัวละคร สำหรับเรื่อง พญาช้างผู้เสียสละ อย่างที่ได้บอกไปว่าเป็นนิทานชาดกที่จัดเป็น 1 ใน 500 ชาติที่พระพุทธเจ้าเคยได้เสวยชาติ ซึ่งชาดกเรื่องนี้จะเล่าถึงพระพุทธเจ้าเมื่อครั้งที่ได้ลงมาเกิดเป็นพญาช้างสีลวะ ด้วยความที่พระองค์ทรงบำเพ็ญทานบารมีมานานจึงได้เกิดเป็นพญาช้างร่างใหญ่กำยำผิวขาวเผือกผ่อง มีงวงและงาสวยงามและมีบริวารรายล้อม

M3 Past Passive

Past Passive คืออะไร

Hi guys! สวัสดีค่ะนักเรียนชั้นม.3 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   Past Passive คืออะไร   Past หมายถึง อดีต ส่วน Passive มาจากโครงสร้างของ Passive voice (ประโยคที่ประธานถูกกระทำ เน้นกรรม) เมื่อนำมารวมกันแล้วPast

M4 Past Passive

Past Passive in English

Hi guys! สวัสดีค่ะนักเรียนชั้นม.4 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   ความหมาย Past หมายถึง อดีต ส่วน Passive มาจาก Passive voice หมายถึง ประโยคที่ประธานถูกกระทำ รวมแล้วหมายถึงการใช้ Passive Voice

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1