ลำดับเลขคณิต

ลำดับเลขคณิต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ลำดับเลขคณิต

ลำดับเลขคณิต คือลำดับที่มีค่าเพิ่มขึ้นหรือลดลงอย่างคงที่ โดยจำนวนที่เพิ่มขึ้นหรือลดลงนี้เราเรียกว่าผลต่างร่วม แทนด้วยสัญลักษณ์ d  โดยที่ d = พจน์ขวา – พจน์ซ้าย

การเขียนลำดับเราจะเขียนแทนด้วย  ลำดับเลขคณิต  โดยที่ a_n คือพจน์ทั่วไปหรือเรียกอีกอย่างว่า พจน์สุดท้ายนั่นเอง

 

การหาพจน์ทั่วไปของลำดับเลขคณิต

พจน์ที่1 \rightarrow n = 1      ;       a_{1}=a_{1}

พจน์ที่2 \rightarrow n = 2     ;       a_{2}=a_{1}+d

พจน์ที่3 \rightarrow n = 3     ;       a_{3}=a_{2}+d+d =a_{2}+2d

                                              =a_{1}+d+d

.                                              =a_{1}+2d

พจน์ที่ n \rightarrow n = n     ;      a_{n}=a_{n-1}+d

ลำดับเลขคณิต

ดังนั้น  สูตรในการหาพจน์ทั่วไปของลำดับเลขคณิต

ลำดับเลขคณิต

 

วิธีการแก้โจทย์ปัญหาที่เกี่ยวกับลำดับเลขคณิต

  1. ต้องรู้ว่าโจทย์ถามหาอะไร จากนั้นเขียนสิ่งที่โจทย์ต้องการไว้ เช่น โจทย์ต้องการหาพจน์ที่ 5 เราจะเขียน a_5=a_1+4d จากนั้นเราก็จะรู้แล้วว่าเราต้องหาอะไรเพื่อให้สมการมันสมบูรณ์และได้คำตอบที่ต้องการ
  2. ดูว่าโจทย์ให้อะไรมาบ้าง โจทย์บางโจทย์อาจจะไม่ให้มาแบบตรงๆ เช่น 1, 3, 5,7,… สิ่งที่โจทย์ให้มาคือ a_1 และ d จะเห็นว่าโจทย์ไม่ได้ให้ d มาตรงๆแต่เราต้องสังเกตเอง
  3. ใช้สิ่งที่โจทย์มา ในการหาสิ่งที่เราต้องการในข้อ 1.

จากข้อ 1-3 ถ้าทำครบตามนี้เราก็จะได้คำตอบตามต้องการแล้ว ทั้งนี้ต้องอาศัยการสังเกต และการฝึกทำบ่อยๆให้ชินด้วย

 

ตัวอย่างลำดับเลขคณิต

โจทย์ลำดับเลขคณิตนั้น สามารถพลิกแพลงได้เยอะมาก ไม่ว่าจะเป็น หาพจน์ที่ n หาว่าค่าที่กำหนดให้นั้นคือพจน์ที่เท่าไหร่ และอีกมากมาย เราไปดูตัวอย่างกันเลย

1. จงหาพจน์ทั่วไป (a_{n}) ของ 5, 7, 9, 11, …

จากโจทย์ \inline a_{1}=5         \inline d=7-5=2

จากสูตร a_{n}=a_{1}+(n-1)d

จะได้ a_{n}=5+(n-1)(2)

                =5+2n-2

                =3+2n

ดังนั้น a_{n}=3+2n

2. ให้ a และ b เป็นจำนวนจริงบวก ถ้า a, 10, b, 20, … เป็นลำดับเลขคณิตจงหาพจน์ที่ 10 , a และ b

จากสูตร a_{n}=a_{1}+(n-1)d

10=a_{1}+d       \cdots (1)

20=a_{1}+3d       \cdots (2)

(2) – (1) : 10=2d

d=5

แทน \inline d=5 ใน (1) : \inline 10=a_{1}+5

\inline a_{1}=5

\therefore a=5 และ b=5+2(5)=15

ดังนั้น a_{10}=5+9(5)

                  =50

3. ถ้าพจน์ที่ 5 และพจน์ที่ 10 ของลำดับเลขคณิตเป็น 14 และ 29 ตามลำดับ แล้วพจน์ที่ 99 เท่ากับเท่าใด

จากสูตร a_{n}=a_{1}+(n-1)d

พจน์ที่ 5 จะได้ว่า  \inline a_{5}=14=a_{1}+4d       \cdots (1)

พจน์ที่ 10 จะได้ว่า  \inline a_{10}=29=a_{1}+9d       \cdots (2)

(2) – (1) : 15=5d

d=3

แทน \inline d=3 ใน (1) : \inline 14=a_{1}+4(3)

\inline a_{1}=14-12=5

\therefore a_{1}=2 และ \inline d=3

พจน์ที่ 99

a_{99}=a_{1}+98(d)

=2+98(3)

=296

4. ลำดับ -24, -15, -6, 3, 12, 21, … , 1776 มีกี่พจน์ (O-net 54)

จากโจทย์ d=-15-(-24)=9 และ a_{1}=-24

“พจน์สุดท้าย (พจน์ที่ n ) มีค่าเท่ากับ 1776”

หา n โดยที่ a_{n}=1776

1776=-24+(n-1)(9)

1776=-24+9n-9

1776+33=9n

n=\frac{1809}{9}=201

ดังนั้น ลำดับดังกล่าวมี 201 พจน์

5. พจน์ที่ 60 ของลำดับเลขคณิต x + 2 , 2x – 5, 2x + 2, …เท่ากับเท่าไหร่

จากโจทย์สิ่งที่ต้องการหาคือ a_{60}

สื่งที่โจทย์ให้มาคือ พจน์แรก และ

สิ่งแรกที่ต้องทำคือหา x โดยใช้สูตรลำดับเลขคณิต

จาก d = พจน์ซ้าย – พจน์ขวา

d = 2x – 5 – (x + 2) = 2x + 2 – (2x – 5)

x – 7 = 7

x = 14

เมื่อนำค่า x ที่หาได้ไปแทน จะได้ลำดับเลขคณิต ดังนี้ 16, 23, 30,…

จากลำดับข้างต้นจะได้ d = 23 – 16 = 7

หา พจน์ที่ 60

a_{60}=16+59(7)=16+413=429

ดังนั้น พจน์ที่ 60 เท่ากับ 429

6. ลำดับเลขคณิต 4 จำนวนที่อยู่กลางระหว่าง 4 กับ 49 คือจำนวนใดบ้าง

ลองเขียนอนุกรมจะได้ 4, a, b, c, d, 49

จากโจทย์สิ่งที่เรารู้คือ พจน์แรก และพจน์สุดท้าย ดังนั้นเราามารถหา d จากพจน์สุดท้ายได้ โดยใช้สูตรลำดับเลขคณิต

ได้เป็น 

49 = 4 + 5d (เนื่องจาก 49 คือพจน์ที่ 6 ดังนั้น n -1 = 5)

45 = 5d

d = 9

เขียนเป็นลำดับเลขคณิตได้เป็น 4, 13, 22, 31, 40, 49

ดังนั้น 4 พจน์ที่อยู่กลางระหว่าง 4 กับ 29 คือ 13, 22, 31, 40 ตามลำดับ

 

ตัวอย่างโจทย์ปัญหาเกี่ยวกับ ลำดับเลขคณิต

1.) แป้งกู้เงินมาจำนวนหนึ่ง โดยจ่ายเงินเดือนแรก 200 บาท และเดือนถัดไปแป้งต้องจ่ายเพิ่มทุกเดือนเดือนละ 50 บาท หลังจากชำระหมดพบว่าเดือนสุดท้ายแป้งจ่ายเงินไป 950 บาท แป้งจ่ายเงินไปทั้งสิ้นกี่เดือน

วิธีทำ

1. หาว่าโจทย์ต้องการอะไร

จะเห็นว่า โจทย์ถามว่าจ่ายเงินไปกี่เดือน นั่นก็คือหาจำนวนเดือน หรือ หา n นั่นเอง

เราจะหา n ได้จากสูตร ลำดับเลขคณิต ดังนั้นเราต้องหา a_n,a_1 และ d

2. ดูว่าโจทย์ให้อะไรมาบ้าง

จากโจทย์ สามารถเขียนได้เป็น 200, 250, 300,…, 950

จะเห็นว่า โจทย์ให้ a_1=200 , d = 50 และ a_n=950

3. นำข้อ 2 ไปเติมในสูตรที่เราเขียนไว้ จะได้ว่า

a_n=a_1+(n-1)d

950=200+(n-1)(50)

950=200+50n – 50

950 = 150 + 50n

800 = 50n

n      =  16

ดังนั้น แป้งจ่ายเงินไปทั้งหมด 16 เดือน

 

2.) แป้งมีเงินในเก็บ 20 บาท และจะเก็บเพิ่มทุกวันวันละ 3 บาท ปริมมีเงินในธนาคาร 300 บาท และจะฝากเงินเพิ่มวันละ 20 บาททุกวัน ในวันที่ แป้งมีเงินในกระปุก 44 บาท ปริมจะมีเงินในธนาคารกี่บาท

วิธีทำ 1. โจทย์ต้องการหา จำนวนเงินของปริมในวันที่(n)แป้งมีเงิน 44 บาท นั่นคือ เราต้องหาจำนวนวันที่แป้งมีเงิน 44 บาท (หา n) จากนั้น หาว่าปริมมีเงินเท่าไหร่ในวันที่ n

2. สิ่งที่โจทย์ให้มา

20, 23, 26, …, 44 (การเก็บเงินของแป้ง) d = 3

300, 320,340, … (การเก็บเงินในธนาคารของปริม) d = 20

3. นำข้อมูลจากข้อ 2 มาแก้โจทย์

หาว่า วันที่แป้งมีเงิน 44 บาท คือวันที่เท่าไหร่

44=20+(n-1)(3) (สูตรลำดับเลขคณิต)

44=20+3n -3

44=17 + 3n

27 = 3n

n = 9

ดังนั้น วันที่ 9 แป้งมีเงินเก็บ 44 บาท

จากนั้นเราจะหาว่า วันที่ 9 ปริมมีเงินเก็บเท่าไหร่โดยใช้สูตรลำดับเลขคณิต

a_9=300+(8-1)(20)

a_9=300+7(20)=300+140=440

ดังนั้นวันที่แป้งมีเงินเก็บ 44 บาท ปริมจะมีเงินทั้งหมด 440 บาท

 

 

 

วิดีโอเพิ่มเติมเกี่ยวกับลำดับเลขคณิต

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Direct Object

Direct and Indirect Objects

สวัสดีน้องๆ ม. 5 ทุกคนนะครับ วันนี้เราจะมาทำความเข้าใจเรื่อง Direct และ Indirect Objects กันครับว่าคืออะไร ถ้าพร้อมแล้วไปดูกันเลย

สำนวนไทยสัตว์น้ำ

สำนวนไทยที่เกี่ยวกับสัตว์น้ำ เรียนรู้ความหมายและที่มา

สำนวนไทย เกี่ยวกับสัตว์น้ำ   สำนวนไทยที่เกี่ยวกับสัตว์น้ำ มีมากมายหลายสำนวน เชื่อว่าน้อง ๆ หลายคนก็คงจะเคยได้ยินผ่านหูกันมาบ้างแล้ว แต่รู้หรือไม่คะว่าทำไมสัตว์น้ำต่าง ๆ ถึงมาอยู่ในสำนวนไทยได้ และสำนวนเหล่านั้นมีที่มาอย่างไร ใช้ในโอกาสใดได้บ้าง วันนี้เรามาเรียนรู้ถึงความหมายและที่มาของสำนวนไทยที่เกี่ยวกับสัตว์น้ำกันค่ะ   ความหมายของสำนวน     สำนวน หมายถึง ถ้อยคำ การพูดหรือเขียนที่มีความหมายไม่ตรงกับรากศัพท์หรือตรงไปตรงมาตามพจนานุกรม แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น ขึ้นอยู่กับเรื่องที่กล่าวถึง โดยมีชั้นเชิงของถ้อยคำชวนให้คิดหรือตีความ

เสภาขุนช้างขุนแผน

เสภาขุนช้างขุนแผน จากนิทานชาวบ้านสู่วรรณคดีราชสำนัก

เสภาเรื่องขุนช้างขุนแผน ได้รับการยกย่องจากวรรณคดีสโมสรว่าเป็นยอดของกลอนเสภาและเป็นที่ยอมรับกันในหมู่นักวรรณคดีว่าเป็นเลิศทั้งในด้านเนื้อเรื่องและการประพันธ์ มีมากมายหลายตอน หลายสำนวนและหลายผู้แต่ง แต่บทเรียนที่น้อง ๆ จะได้ศึกษากันในวันนี้เป็น เสภาขุนช้างขุนแผน ตอน ขุนช้างถวายฎีกา จะมีเนื้อหาและความเป็นมาอย่างไรเราไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของ เสภาขุนช้างขุนแผน   ขุนช้างขุนแผนสันนิษฐานว่าเป็นเรื่องจริงที่เกิดขึ้นในสมัยอยุธยา จากพงศาวดารทำให้ทราบว่าขุนแผนรับราชการอยู่ในสมัยสมเด็จพระพันวษา หรือ สมเด็จพระรามาธิบดีที่ 2 ซึ่งครองราชย์ระหว่าง พ.ศ. 2034-พ.ศ 2072 ต่อมามีการนำเรื่องขุนช้างขุนแผนมาแต่งเป็นกลอนสุภาพและบทเสภาโดยใช้กรับเป็นเครื่องประกอบจังหวะ

signal words

Signal Words ในภาษาอังกฤษคืออะไร?

สวัสดีน้องๆ ม. 1 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เรื่อง Signal Words ในภาษาอังกฤษว่าคืออะไร และเอาไปใช้ได้อย่างไรได้บ้าง เราไปเริ่มกันเลยครับ

เรียนออนไลน์ คณิตศาสตร์

กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟโดยใช้วิธีการหาจุดตัดของแกน x และ แกน y

NokAcademy_ม6 Relative Clause

ทบทวนเรื่อง Relative clause + เทคนิค Error Identification

สวัสดีค่ะนักเรียนม. 6 ที่รักทุกคน วันนี้เราจะไปดู Relative clause หรือ อนุประโยคในภาษาอังกฤษ ที่ทำหน้าที่เหมือนกันกับคำคุณศัพท์ (Adjective) ซึ่งมีหน้าที่ขยายคำนามที่อยู่ข้างหน้า  และจะใช้ตามหลัง Relative Pronoun เช่น  who, whom, which, that, และ whose แต่สงสัยมั้ยคะว่าทำไมต้องเรียนเรื่องนี้ ลองดูตัวอย่างประโยคด้านล่างแล้วจะร้องอ๋อมากขึ้น พร้อมข้อสอบ Error

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1