เรนจ์ของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เรนจ์ของความสัมพันธ์

เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย R_r

 

กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย R_r คือสมาชิกตัวหลัง

เช่น r_1 = {(2, 2), (3, 5), (8, 10)}

จะได้ว่า R_{r_1} = {2, 5, 10}

กรณีที่ r เขียนในรูปแบบที่บอกเงื่อนไข เราอาจจะสามารถนำมาเขียนแบบแจกแจงสมาชิกได้

เช่น ให้ A = {1, 2, 3} และ r_2 = {(x, y) ∈ A × A : y = 2x}

x = 1 ; y = 2(1) = 2

x = 2 ; y = 2(2) = 4

x = 3 ; y = 2(3) = 6

ได้คู่อันดับ ดังนี้ (1, 2), (2, 4), (3, 6) เนื่องจาก (x, y) ต้องเป็นสมาชิกใน A × A

และจาก (1, 2) ∈ A × A

(2, 4) ∉ A × A

(3, 6) ∉ A × A

ดังนั้น สามารถเขียน r ในรูปแจกแจงสมาชิกได้ดังนี้  r_2 = {(1, 2)} จากเรนจ์ของความสัมพันธ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r

สรุปได้ว่า R_{r_2} = {2}

แต่บางกรณีเราไม่สามารถแจกแจงสมาชิกได้ เช่น ให้ x, y เป็นจำนวนจริงใดๆ และ r_3 = {(x, y) : y = \frac{1}{x}}

พิจารณากราฟของสมการ y = \frac{1}{x}

เรนจ์ของความสัมพันธ์

จะเห็นว่ากราฟของ y = \frac{1}{x} ไม่ตัดแกน x นั่นคือ y ≠ 0

และจาก เรนจ์ของความสัมพันธ์คือ สมาชิกตัวหลังของคู่อันดับ ซึ่งก็คือ y นั่นเอง 

หรืออาจจะสังเกตจากสมการก็ได้ เนื่องจาก x เป็น 0 ไม่ได้ นั่นก็แปลว่ายังไง y ก็ไม่เป็น 0 แน่นอน

ดังนั้น R_{r_3} = {y : y  เป็นจำนวนจริง และ y ≠ 0}

 

ตัวอย่างการหาเรนจ์ของความสัมพันธ์

1.) ให้ A = {1, 2, 3} และ r = {(x, y) : y = 2x , x ∈ A}

จาก x เป็นสมาชิกใน A 

x = 1 ; y = 2(1) = 2

x = 2 ; y = 4

x = 3 ; y = 6

r = {(1, 2), (2, 4), (3, 6)}

ดังนั้น R_r = {2, 4, 6}

 

2.) ให้ r = {(x, y) ∈ \mathbb{R}\times\mathbb{R} : y = x²}

เงื่อนไขของ (x, y) ∈ \mathbb{R}\times\mathbb{R} 

พิจารณากราฟ y = x²

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า ค่า y มีค่าตั้งแต่ 0 ทำให้ได้ว่า y เป็นจำนวนจริงที่มากกว่าหรือเท่ากับ 0 

หรือจะสังเกตจากสมการเลยก็ได้ จาก y = x²  จากที่เรารู้อยู่แล้วว่า จำนวนจริงยกกำลังสองยังไงก็ไม่เป็นลบแน่นอน เราเลยรู้ว่า y ยังไงก็ต้องเป็นบวกหรือ 0 

ดังนั้น R_r = {y : y เป็นจำนวนจริง และ y ≥ 0}

 

3.) ให้ r = {(x, y) : y = \frac{1}{x-3}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของ y = \frac{1}{x-3} จะได้

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า กราฟไม่ตัดแกน x เลย (จุดที่กราฟตัดแกน x คือจุดที่ y = 0) นั่นคือ y เป็นอะไรก็ได้แต่ไม่มีทางเป็น 0 

หรือจะสังเกตจากสมการ y = \frac{1}{x-3} จากที่รู้ว่า x นั้นเป็น 3 ไม่ได้ (เพราะจะทำให้ y หาค่าไม่ได้) แต่เมื่อแทน x เป็นจำนวนจริงอื่น ยังไง y ก็ไม่มีทางเป็น 0 เพราะตัวเศษเป็นค่าคงที่

ดังนั้น R_r = {y : y เป็นจำนวนจริง และ y ≠ 0}

 

4.) ให้ r = {(x, y) : y = \sqrt{x}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของสมการ y = \sqrt{x}

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า y ไม่เป็นลบเลย นั่นคือ y มากกว่าหรือเท่ากับ 0

หรือจะสังเกตจากสมการก็ได้ จากสมการ y = \sqrt{x} จากที่เรารู้ว่าโดเมนหรือ x เป็นลบ ไม่ได้ นั่นคือ x มากกว่าหรือเท่ากับ 0 ทำให้ได้ว่า y ไม่มีทางเป็นลบเหมือนกัน

ดังนั้น R_r = {y : y ∈ R และ y ≥ 0}

 

วิดีโอ เรนจ์ของความสัมพันธ์

https://youtu.be/dHYXyKemluc

 

เนื้อหาที่ควรรู้และเกี่ยวข้องกับเรนจ์ของความสัมพันธ์

  1. กราฟของความสัมพันธ์
  2. โดเมนของความสัมพันธ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนรู้ความเหมือนที่แตกต่างของคำพ้อง

  น้อง ๆ หลายคนคงจะเคยเห็นฝาแฝดกันมาบ้างใช่ไหมคะ แล้วรู้หรือเปล่าคะว่าในภาษาไทยเรานั้นก็มีฝาแฝดเหมือนกัน แต่ฝาแฝดนั้นถูกเรียกว่า คำพ้อง นั่นเองค่ะ หลายคำในภาษาไทยมีจุดที่เหมือนกันแต่ก็มีส่วนที่ต่างกันออกไปด้วย เพื่อไม่ให้สับสนว่าคำไหนคือคำไหน อ่านอย่างไร หมายความว่าอะไรกันแน่ วันนี้เราไปเรียนรู้เรื่องคำพ้องพร้อม ๆ กันเลยค่ะ   คำพ้อง   ความหมายของคำพ้อง     ประเภทของคำพ้อง     คำพ้องเสียง

เมทริกซ์

เมทริกซ์ และเมทริกซ์สลับเปลี่ยน

เมทริกซ์ เมทริกซ์ (Matrix) คือตารางสี่เหลี่ยมที่บรรจุตัวเลขหรือตัวแปร สามารถนำมาบวก ลบ คูณกันได้ เราสามารถใช้เมทริกซ์ในการการแก้ระบบสมการเชิงเส้นได้ซึ่งจะสะดวกกว่าการแก้แบบกำจัดตัวแปรสำหรับสมการที่มากกว่า 2 ตัวแปร ตัวอย่างการเขียนเมทริกซ์ เรียกว่าเมทริกซ์มิติ 3×3 ซึ่ง 3 ตัวหน้าคือ จำนวนแถว 3 ตัวหลังคือ จำนวนหลัก ซึ่งเราจะเรียกแถวในแนวนอนว่า แถว และเรียกแถวในแนวตั้งว่า หลัก และจากเมทริกซ์ข้างต้นจะได้ว่า

เรียนรู้และประเมินคุณค่าบทประพันธ์ อิศรญาณภาษิต

หลังจากครั้งที่แล้ว ที่เราได้เรียนรู้ประวัติความเป็นมา ลักษณะคำประพันธ์ และตัวบทที่สำคัญในเรื่องกันแล้ว ครั้งนี้เรื่องที่น้อง ๆ จะได้เรียนรู้ต่อไปก็คือคุณค่าที่อยู่ใน อิศรญาณภาษิต นั่นเองค่ะ อย่างที่รู้กันว่าวรรณคดีเรื่องนี้อัดแน่นไปด้วยคำสอนและข้อคิดเตือนใจต่าง ๆ มากมาย เพราะงั้นเราไปเรียนรู้กันให้ลึกขึ้นดีกว่านะคะว่าคุณค่าในเรื่องนี้จะมีด้านใดบ้าง ไปดูกันเลยค่ะ   คุณค่าในเรื่องอิศรญาณภาษิต     คุณค่าด้านเนื้อหา   อิศรญาณภาษิต มีเนื้อหาที่เป็นคำสอน ข้อคิดเตือนใจ เพื่อให้คนในสังคมได้ตระหนักถึงการกระทำของตน ว่าทำอย่างไรจึงจะอยู่ร่วมกับผู้อื่นอย่างเป็นปกติสุขได้

Passive Voice ในปัจจุบัน

Passive Voice ในรูปปัจจุบัน

สวัสดีค่ะนักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดูการใช้ Passive Voice ในรูปปัจจุบัน กัน ถ้าพร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมาย   Passive Voice (แพ็ซซิฝ ว็อยซ) หมายถึงประโยคที่เน้นกรรม โดยการนำโครงสร้างผู้ถูกกระทำขึ้นต้นประโยค และหากว่าต้องการเน้นผู้กระทำให้เติม  “by + ผู้กระทำ” ท้ายประโยค แต่ว่าเราสามารถละ by ไว้ได้น๊า ในบทนี้เราจะไปดูรูปประโยคในปัจจุบันกันจร้า

เรียนรู้เรื่อง ส่วนประกอบของประโยค

​ประโยค คือถ้อยคำต่าง ๆ ที่นำมาเรียงกันแล้วมีใจความสมบูรณ์ว่าใครกำลังทำอะไร ที่ไหน และเมื่อไหร่ บทเรียนในวันนี้ น้อง ๆ จะได้เรียนรู้เรื่อง ส่วนประกอบของประโยค เพื่อให้เข้าใจมากขึ้นว่าประโยคที่เราใช้กันอยู่ทุกวันนี้ประกอบด้วยอะไรบ้าง ไปเรียนรู้พร้อมกันเลยค่ะ   ส่วนประกอบของประโยค   โดยทั่วไปประโยคจะมีอยู่ด้วยกัน 2 ภาค คือ ภาคประธานและภาคแสดง     ภาคประธาน คือ

คำเชื่อม Conjunction

การใช้คำสันธาน(Conjunctions)

สวัสดีค่ะนักเรียนชั้นม.3 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “การใช้คำสันธาน(Conjunctions)“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด คำสันธาน(Conjunctions)คืออะไร   คำสันธาน (Conjunctions) คือ คำที่ใช้เชื่อมระหว่างประโยคต่อประโยค คำต่อคำ หรือระหว่างกริยาต่อกริยา และอื่นๆ เช่น for, and, or, nor, so, because, since ดังตัวอย่างด้านล่างเลยจ้า ตัวอย่างเช่น เชื่อมนามกับนาม

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1