อสมการ

จากบทความที่ผ่านมาได้พูดถึงเรื่องช่วงของจำนวนจริงไปแล้ว บทความนี้เราจะนำความรู้เกี่ยวกับช่วงของจำนวนจริงมาใช้ในการแก้อสมการเพื่อหาคำตอบกันนะคะ ถ้าน้องๆได้อ่านบทความนี้แล้วรับรองว่าพร้อมทำข้อสอบแน่นอนค่ะ
อสมการ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

อสมการ

อสมการ คือการไม่เท่ากัน ซึ่งการไม่เท่ากันนั้น สามารถเป็นไปได้ทั้ง มากกว่า, น้อยกว่า , มากกว่าหรือเท่ากับ และน้อยกว่าหรือเท่ากับ เนื้อหาในบทความนี้จะเกี่ยวข้องกับเรื่องช่วงของจำนวนจริงด้วย น้องๆสามารถดูบทความเรื่องช่วงของจำนวนจริงเพิ่มเติมได้ที่ >>>ช่วงของจำนวนจริง<<<

การแก้อสมการจะทำคล้ายๆกับสมการ มีเป้าหมายเดียวกันก็คือ หาค่าตัวแปรตัวแปรหนึ่งสมมติให้เป็น x แต่คำตอบจะต่างกับสมการ การแก้สมการหาค่า x เราจะได้ค่า x มา โดยระบุชัดเจนเลยว่า x มีค่าเท่ากับเท่านี้ แต่สำหรับอสมการคำตอบจะเป็นช่วง เช่น แก้อสมการแล้วได้คำตอบว่า x > 3 แสดงว่า x ที่มากกว่า 3 นั้นเป็นคำตอบของอสมการทั้งหมดเลย

สมบัติที่ควรรู้ของอสมการ

ให้ a, b เป็นจำนวนจริงใดๆ

1.) ถ้า a > b แล้ว -a < -b

คำอธิบายเพิ่มเติม ถ้า เรามีจำนวนจริงที่ 2 ตัว ที่ไม่เท่ากัน เมื่อคูณด้วยจำนวนจริงลบเข้าไปทั้งสองฝั่งของอสมการ จะทำให้เครื่องหมายของอสมการเปลี่ยนไป

ตัวอย่าง  2 < 3  สมมติคูณด้วย -3 ทั้งสองข้างของอสมการ จะได้ว่า 2(-3) > 3(-3)  ⇒ -6 > -9

เห็นได้ชัดเลยว่า เมื่อคูณลบไปแล้ว เครื่องหมายจะเปลี่ยน

 

ตัวอย่างการแก้อสมการ

 

1.) จงหาค่า x เมื่อ x + 5 > 2x -2  พร้อมกับวาดเส้นจำนวน

อสมการ

2.) จงหาค่า x เมื่อ x² -3 > 1 พร้อมกับวาดเส้นจำนวน

กรณีที่มีสองวงเล็บที่มากกว่า 0

เราจะเห็นว่าเส้นจำนวนแบ่งออกเป็น 3 ช่วง ถ้าเจอแบบนี้ให้น้องๆ

1.)ทดเครื่องหมายบวกไว้ที่ช่องขวาสุด ช่องถัดไปเป็นลบสลับแบบนี้ไปเรื่อยๆ (เริ่มจากขวาเสมอ) 

2.)พิจารณาเครื่องหมายของอสมการ จะเห็นว่าเป็นเครื่องหมายมากกว่า ดังนั้น ต้องลากเส้นไปทางเครื่องหมายบวกดังรูป

กลับกันถ้าเป็นกรณีน้อยกว่าให้ลากเส้นไปทางเครื่องหมายลบ ดังรูปในข้อ 4

3.) นำค่า x ของทั้งสองช่วงมา ยูเนียนกัน 

 

3.) จงหาค่า x เมื่อ x² + 3x – 18 ≥ 0 พร้อมกับวาดเส้นจำนวน

4.) (O-Net) กำหนดให้ I แทนเซตของจำนวนเต็ม และ A = {x : x ∈ I และ  2x² – 3x – 14 ≤ 0}

ผลรวมของสมาชิกในเซต A เท่ากับเท่าใด

อสมการ

 

 

วีดิโอ อสมการ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง การวัดความยาวส่วนโค้ง ในบทความนี้จะเป็นการวัดความยาวของวงกลม 1 หน่วย วงกลมหนึ่งหน่วย คือวงกลมที่มีจุดศูนย์กลางที่จุดกำเนิด และมีรัศมียาว 1 หน่วย จากสูตรของเส้นรอบวง คือ 2r ดังนั้นวงกลมหนึ่งหน่วย จะมีเส้นรอบวงยาว 2 และครึ่งวงกลมยาว   จุดปลายส่วนโค้ง   จากรูป จะได้ว่าจุด P เป็นจุดปลายส่วนโค้ง   จากที่เราได้ทำความรู้จักกับวงกลมหนึ่งหน่วยและจุดปลายส่วนโค้งแล้ว

เรียนรู้ที่มาของชาติกำเนิดอันยิ่งใหญ่ มหาเวสสันดรชาดก

หลายคนคงจะเคยได้ยินคำว่า มหาชาติชาดก หรือ มหาเวสสันดรชาดก กันมาบ้างแล้วผ่านสื่อต่าง ๆ แต่รู้หรือไม่คะว่าคำ ๆ นี้มีที่จากอะไร คำว่า มหาชาติ เป็นคำเรียก เวสสันดรชาดก ส่วนชาดกนั้นเป็นชื่อคัมภีร์หนึ่งของพุทธศาสนาที่กล่าวถึงอดีตชาติของพระพุทธเจ้า ดังนั้นมหาเวสสันดรชาดก จึงเป็นเรื่องราวที่เกี่ยวกับชาติกำเนิดอันหยิ่งใหญ่ของพระพุทธเจ้า น้อง ๆ คงสงสัยใช่ไหมคะว่าทำไมเวสสันดรชาดกถึงได้ชื่อว่าเป็นชาดกที่ยิ่งใหญ่ที่สุด ถ้าอยากรู้คำตอบแล้วล่ะก็ เราไปเรียนรู้ความเป็นของเรื่องนี้พร้อมกันเลยค่ะ   มหาเวสสันดรชาดก   มหาชาติชาดก

การเลื่อนขนาน

สำหรับการแปลงทางเรขาคณิตในบทนี้จะกล่าวถึงการแปลงที่จะได้ภาพที่มีรูปร่างเหมือนกันและขนาดเดียวกันกับรูปต้นแบบเสมอ โดยใช้การเลื่อนขนาน

การใช้คำ

เรียนรู้และทำความเข้าใจการใช้คำในภาษาไทยอย่างง่ายๆ

การใช้คำในภาษาไทย มีความสำคัญมาก แม้ว่าน้อง ๆ จะคุ้นเคยกับภาษาไทยดีในระดับหนึ่งแล้ว แต่แน่ใจหรือเปล่าคะว่าใช้คำกันได้อย่างถูกต้องแล้ว เพราะการใช้คำให้ถูกก็ถือเป็นเรื่องสำคัญค่ะ ดังนั้นบทเรียนหลักภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่องการใช้คำต่าง ๆ ได้ถูกต้องกันค่ะ จะมีอะไรบ้างไปเรียนรู้พร้อม ๆ กันเลยค่ะ   การใช้คำ     การใช้คำกำกวม   คำกำกวม คือ การใช้คำหรือภาษาที่มีความหมายไม่ชัดเจน เป็นเหตุให้การสื่อสารผิดพลาด

M1 การใช้ Verb Be

การใช้ Verb Be

สวัสดีค่ะนักเรียนชั้นม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ Verb Be กันนะคะ พร้อมแล้วก็ไปลุยกันเลยจ้า Let’s go! ความหมาย   Verb be ในที่นี้จะแปลว่า Verb to be นะคะ แปลว่า เป็น อยู่ คือ ซึ่งหลัง verb to

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1