สัจนิรันดร์

ในบทความจะเขียนเกี่ยวกับวิธีการพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ ซึ่งจะเน้นให้น้องๆเข้าใจหลักการของการพิสูจน์ สิ่งที่น้องจะได้จากบทความนี้คือ น้องจะสามารถพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ได้และหากน้องๆขยันทำโจทย์บ่อยๆจะทำให้น้องวิเคราะห์โจทย์เกี่ยวกับสัจนิรันดร์ได้ง่ายขึ้นแน่นอนค่ะ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สัจนิรันดร์ คือรูปแบบของประพจน์ที่มีค่าความจริงเป็นจริงเสมอ

วิธีการพิสูจน์การเป็นสัจนิรันดร์

การพิสูจน์ทำได้หลายวิธีไม่ว่าจะเป็น มองจากตารางค่าความจริง หรืออาจจะหาข้อขัดแย้งก็ได้

1) วิธีพิสูจน์จากตารางค่าความจริง

ถ้าเรามองจากตารางค่าความจริงประพจน์ที่เราพิจารณาจะต้องเป็น “จริงทุกกรณี” ถ้าเป็นเท็จแค่กรณีเดียวถือว่าไม่เป็นสัจนิรันดร์

เช่น พิจารณาประพจน์  (p→q)∨p ว่าเป็นสัจนิรันดร์หรือไม่

วิธีพิสูจน์ เราจะใช้วิธีสร้างตารางค่าความจริง ของประพจน์ (p→q)∨p

จากตารางจะเห็นว่าทุกกรณีมีค่าความจริงทั้งหมด ดังนั้นประพจน์ (p→q)∨p

เป็นสัจนิรันดร์

ลองมาดูตัวอย่างกรณีที่ไม่เป็นสัจนิรันดร์

พิจารณาประพจน์ (p∨q)→q ว่าเป็นสัจนิรันดร์หรือไม่

เราจะสร้างตารางค่าความจริง ดังนี้

จากตารางจะได้ว่า ประพจน์ (p→q)∨p ไม่เป็นสัจนิรันดร์ เพราะว่ามีกรณีที่ทำให้ประพจน์มีค่าความจริงเป็นเท็จ

จากตัวอย่าง 2 ตัวอย่างนี้ จะเห็นว่าการใช้ตารางค่าความจริงจะทำให้เราเห็นภาพง่าย แต่ก็มีข้อเสียอยู่ คือ ในกรณีที่มีตัวแปร(p,q,r,s)มากกว่า 2 เราจะต้องหาทุกกรณีซึ่งจะทำให้เสียเวลามาก ดังนั้น การใช้ตารางค่าความจริงอาจจะไม่เหมาะกับโจทย์บางรูปแบบ

แต่ข้อดีของการใช้ตารางก็คือ สำหรับคนที่ไม่ค่อยแม่นจะทำให้เราเข้าใจและเห็นภาพได้ง่าย

2.) พิสูจน์ด้วยวิธีสมมติว่าเป็นเท็จ

ก็คือการสมมติว่าประพจน์มีค่าความจริงเป็นเท็จ จากนั้นเราก็จะพิจารณาว่า ประพจน์ดังกล่าว จะเป็นเท็จในกรณีไหนบ้าง ถ้าเกิดการขัดแย้งแสดงว่าประพจน์ดังกล่าวเป็นสัจนิรันดร์ แต่ถ้าไม่ขัดแย้งกันแสดงว่าประพจน์ดังกล่าวไม่เป็นสัจนิรันดร์ อ่านแล้วอาจจะงงๆ ลองมาดูตัวอย่างดีกว่าค่ะ

เช่น พิจารณาประพจน์  (p→q)∨p ว่าเป็นสัจนิรันดร์หรือไม่

วิธีพิสูจน์

3.) วิธียกตัวอย่างค้าน

วิธีจะเหมาะกับกรณีที่ไม่เป็นสัจนิรันดร์ เราจะยกตัวอย่างที่ทำให้ประพจน์ไม่เป็นสัจนิรันดร์

เช่น จงตรวจสอบว่า p→(p∧q) เป็นสัจนิรันดร์หรือไม่ ถ้าไม่จงยกตัวอย่าง

วิธีทำ กำหนดให้ p มีค่าความจริงเป็น จริง และ q มีค่าความจริงเป็นเท็จ

พิจารณาประพจน์ p→(p∧q)

จะเห็นว่าเมื่อให้ p มีค่าความจริงเป็นจริง และ q มีค่าความจริงเป็นเท็จ เราจะได้ประพจน์ที่มีค่าความจริงเป็นเท็จ เมื่อมีกรณีที่เป็นเท็จอยู่ ทำให้ไม่เป็นสัจนิรันดร์

จำไว้ว่า สัจนิรันด์คือต้องเป็นจริงเสมอ ถ้ามีกรณีที่ทำให้เป็นเท็จ ประพจน์นั้นจะไม่เป็นสัจนิรันดร์ทันที!!

ตัวอย่าง

 

1.) จงพิสูจน์ว่าประพจน์ (p→q)↔(∼p∨q) เป็นสัจนิรันดร์

วิธีพิสูจน์ สร้างตารางค่าความจริงได้ดังนี้

เนื่องจาก ค่าความจริงของประพจน์(p→q)↔(∼p∨q)มีความความจริงเป็นจริงทุกกรณี ดังนั้นประพจน์(p→q)↔(∼p∨q)เป็นสัจนิรันดร์

 

2.) จงแสดงว่าประพจน์ [(p→q)∧(q→r)]→(p→r) เป็นสัจนิรันดร์

วิธีทำ เราจะสมมติให้ ประพจน์[(p→q)∧(q→r)]→(p→r)มีค่าความจริงเป็นเท็จ

ดังนั้น [(p→q)∧(q→r)]→(p→r) เป็นสัจนิรันดร์

วิธีการเลือกใช้วิธีพิสูจน์ ให้ดูจากตัวเชื่อมระหว่างประพจน์2ประพจน์ ถ้าเป็น “→” และ “∨” มักจะใช้วิธีสมมติขัดแย้งได้ แต่ถ้าเป็นอย่างอื่นอาจจะต้องใช้วิธีการยกตัวอย่างกรณีที่ทำให้เป็นเท็จ หรือจำเป็นที่จะต้องทำตารางค่าความจริง

หลังจากศึกษาดูตัวอย่างแล้วน้องๆอาจจะยังเลือกไม่ค่อยได้ว่ากรณีไหนควรใช้วิธีแบบไหน แต่หากน้องๆหมั่นทำโจทย์จะทำให้น้องเชี่ยวชาญการใช้วิธีพิสูจน์มากขึ้น และจะทำให้น้องๆได้ทวนเรื่องค่าความจริงของประพจน์ไปด้วย

ไม่มีใครเข้าใจตั้งแต่ครั้งแรกที่เรียน ถ้าน้องเปิดใจให้วิชาคณิตศาสตร์และขยันทำโจทย์ คณิตศาสตร์ก็เป็นอีกวิชาที่สนุก สู้ๆนะคะ❤️❤️

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การคูณเศษส่วนและจํานวนคละ

การคูณเศษส่วนและจํานวนคละ

บทความนี้จะพาน้อง ๆมารู้จักกับการคูณเศษส่วนและจำนวนคละ รวมถึงเทคนิคการคูณเศษส่วนและจำนวนคละที่ถูกต้องและรวดเร็ว หลังจากอ่านบทความนี้จบสิ่งที่จะได้รับก็คือหลักการคูณเศษส่วนและจำนวนคละประเภทต่าง ๆ การตัดทอนเศษส่วนจำนวนคละและตัวอย่างการคูณเศษส่วนจำนวนคละที่เข้าใจง่ายและเห็นภาพ สามารถนำไปใช้ได้จริงในห้องเรียน

โคลงโสฬสไตรยางค์

โคลงโสฬสไตรยางค์ โคลงสุภาษิตผลงานพระราชนิพนธ์ในร.5

  โคลงโสฬสไตรยางค์ เป็นโคลงสุภาษิต ผลงานพระราชนิพนธ์ของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับวรรณคดีที่เปี่ยมไปด้วยคุณค่าและข้อคิดสอนใจมากมาย ถ้าอยากรู้แล้วว่ามีเนื้อหาอะไรและมีข้อคิดอย่างไรบ้าง เราก็ไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ   ประวัติความเป็นมา     โคลงโสฬสไตรยางค์ (พ.ศ. 2423) เป็นโคลงสุภาษิต บทพระราชนิพนธ์ในพระบาทสมเด็จเพราะจุลจอมเกล้าเจ้าอยู่หัว รัชกาลที่ 5 เดิมเป็นภาษาอังกฤษ จึงได้ทรงพระกรุณาโปรดเกล้าโปรดกระหม่อมให้กวีในพระราชสำนักแปลและประพันธ์โคลงเป็นภาษาไทย โดยพระองค์ได้ทรงตรวจแก้และทรงพระราชนิพนธ์โคลงบทนำด้วย

จำนวนอตรรกยะ

จำนวนอตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนอตรรกยะ และหลักการของจำนวนอตรรกยะกับการนำไปประยุกต์

some any

การใช้ Some และ Any ตามด้วยคำนาม

สวัสดีน้องๆ ม. 2 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การใช้ some และ any กันแบบเข้าใจง่ายๆ ถ้าพร้อมแล้วลองไปดูกันเลยครับ

ความสัมพันธ์ที่ “รู้จักฉัน รู้จักเธอ” ของเศษส่วนและทศนิยม

เศษส่วนและทศนิยมมีความสัมพันธ์กันคือสามารถเขียนเศษส่วนให้อยู่ในรูปของทศนิยมหรือเขียนทศนิยมให้อยู่ในรูปของเศษส่วนได้โดยค่าของเศษส่วน และทศนิยมนั้นจะมีค่าเท่ากัน บทความนี้จะอธิบายหลักการความสัมพันธ์ของเศษส่วนและทศนิยมพร้อมวิธีคิดที่เห็นภาพ ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้ คือการเปลี่ยนเศษส่วนให้เป็นทศนิยมและการเปลี่ยนทศนิยมให้เป็นเศษส่วนแล้วยังมีเทคนิคการสังเกตง่ายๆที่จะสามารถทำให้เราทำได้อย่างรวดเร็วและถูกต้องยิ่งขึ้น

การอ่านแผนภูมิรูปวงกลม

ในบทความนี้เราจะได้เรียนรู้การอ่านแผนภูมิรูปวงกลมรวมทั้งส่วนประกอบต่างที่ควรรู้เกี่ยวกับแผนภูมิรูปวงกลม

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1