พาราโบลา

พาราโบลา

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

พาราโบลา

พาราโบลา คือเซตของจุดบนระนาบมีระยะห่างจากจุดโฟกัส (focus) เท่ากับระยะห่างจากเส้นไดเรกตริกซ์ (directrix)

พาราโบลาที่มีจุดยอดอยู่ที่จุดกำเนิด

กราฟของพาราโบลาจะมีลักษณะคล้ายระฆัง ตอนม.3 น้องๆเคยเห็นทั้งพาราโบลาหงายและคว่ำแล้ว แต่ในบทความนี้น้องๆจะได้รู้จักกับพาราโบลาตะแคงซ้ายและขวา

พาราโบลา

พาราโบลา

สามารถเขียนเป็นตารางให้เข้าใจง่ายๆได้ดังนี้

พาราโบลา

ข้อสังเกต  จะเห็นว่าถ้าแกนสมมาตรคือแกน y รูปแบบสมการของพาราโบลา y จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ y

เช่นเดียวกับแกนสมมาตรเป็นแกน x รูปแบบสมการของพาราโบลา x จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ x

พาราโบลาที่มีจุดยอดที่จุด (h, k)

 

ความแตกต่างระหว่างจุดยอดที่จุดกำเนิดกับจุดยอดที่จุด (h, k)

ความแตกต่างมีแค่นิดเดียวเท่านั้นค่ะ คือ มี h และ k เข้ามาเกี่ยว น้องๆลองสังเกตดูนะคะ จากตอนแรกที่จุดยอด (0,0) จุดโฟกัส จะมีแค่ 0 กับ c (ซึ่งจะอยู่ตำแหน่งไหนก็แล้วแต่ลักษณะของกราฟ) สมการเส้นไดเรกตริกซ์ ก็จะมีแค่ c ที่เกี่ยวข้อง

แต่พอเป็น (h, k) เราแค่เพิ่มไป เช่น F(0, c) ก็กลายเป็น F(h, k+c) เป็นต้น

 

วิธีการจำ : พี่แนะนำให้น้องๆจำพาราโบลาที่จุดเป็น (h, k) ไปเลยนะคะ

ตัวอย่างที่ 1 จงหาสมการพาราโบลาที่มีจุดยอดที่ (0,0) และมีจุดโฟสัส (0,4) พร้อมบอกลักษณะของพาราโบลา

พาราโบลา

ตัวอย่างที่ 2 จงหาโฟกัสและเส้นไดเรกตริกซ์ของพาราโบลา \inline y^{2}=12x-4y+64

 

 

คลิปที่เกี่ยวข้องกับพาราโบลา

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

M4 Past Passive

Past Passive in English

Hi guys! สวัสดีค่ะนักเรียนชั้นม.4 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   ความหมาย Past หมายถึง อดีต ส่วน Passive มาจาก Passive voice หมายถึง ประโยคที่ประธานถูกกระทำ รวมแล้วหมายถึงการใช้ Passive Voice

จุด

จุด : เรขาคณิตวิเคราะห์

จุด จุด เป็นตัวบอกตำแหน่งของสิ่งต่างๆ เช่น ตำแหน่งของสถานที่ต่างๆ ในเรื่องเรขาคณิตวิเคราะห์ จุดใช้บอกตำแหน่งในระนาบ 2 มิติ หรือ 3 มิติ เช่น   ระยะทางระหว่างจุดสองจุด เราสามารถหาระยะทางระหว่างจุดสองจุดได้ โดยใช้สูตร โดยจะกำหนดให้  และ  เป็นจุดในระนาบ เราจะได้ว่าระยะห่างระหว่างจุดทั้งสองหาได้จาก ตัวอย่าง ระยะห่างระหว่าง A(1,1) และ

มงคลสูตรคำฉันท์ ตัวบท

ศึกษาตัวบทที่น่าสนใจในวรรณคดีเรื่องมงคลสูตรคำฉันท์

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคนกลับมาพบกับบทเรียนภาษาไทยที่น่าสนใจกันอีกเช่นเคย ต่อจากครั้งก่อนที่เราได้เรียนประวัติความเป็นมา เรื่องย่อ และลักษณะคำประพันธ์ของวรรณคดีพระพุทธศาสนาเรื่องมงคลสูตรคำฉันท์ไปแล้ว วันนี้เราจะมาเรียนกันต่อในส่วนที่เป็นตัวบทสำคัญ โดยจะยกตัวบทที่มีความน่าสนใจพร้อมกับถอดความมงคลทั้ง 38 ประการว่ามีอะไรบ้าง  ดังนั้น ถ้าน้อง ๆ คนไหนพร้อมแล้วก็มาเข้าสู่เนื้อหาไปพร้อม ๆ กันเลย     ประวัติความเป็นมา สำหรับประวัติความเป็นมาของเรื่องมงคลสูตรคำฉันท์มาจากการที่พระบาทสมเด็จพระมงกุฏเกล้าเจ้าอยู่หัว หรือรัชกาลที่ 6 ทรงเลื่อมใสในพระพุทธศาสนาจึงได้ถอดความอุดมมงคล 38

กาพย์ห่อโคลงประพาสธารทองแดง

กาพย์ห่อโคลงประพาสธารทองแดง ที่มาของวรรณคดีเชิงสารคดี

กาพย์ห่อโคลงประพาสธารทองแดง มีมาตั้งแต่สมัยอยุธยา เป็นวรรณคดีที่สำคัญในฐานะสารคดี เหตุใดจึงเป็นเช่นนั้น บทเรียนในวันนี้จะพาน้อง ๆ ไปหาคำตอบของวรรณคดีเรื่องดังกล่าวว่ามีประวัติความเป็นมาอย่างไร ใครเป็นผู้แต่ง พร้อมเรียนรู้ความหมายของกาพย์ห่อโคลงและเนื้อเรื่องโดยสรุปของเรื่องด้วย ไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของ กาพย์ห่อโคลงประพาสธารทองแดง     กาพย์ห่อโคลงประพาสธารทองแดงเป็นบทชมธรรมชาติที่แต่งเพื่อความเพลิดเพลินระหว่างการเดินทางของกระบวนเสด็จทางสถลมารคจากท่าเจ้าสนุกถึงธารทองแดง ซึ่งธารทองแดงในที่นี้ เป็นชื่อลำน้ำที่เขาพระพุทธบาท ซึ่งเป็นบริเวณที่ตั้งของพระตำหนักธารเกษมที่มีมาตั้งแต่สมัยสมเด็จพระเจ้าปราสาททอง โดยเจ้าฟ้าธรรมธิเบศรทรงพระนิพนธ์วรรณคดีเรื่องนี้ขึ้นเมื่อครั้งตามเสด็จสมเด็จพระเจ้าอยู่หัวบรมโกศไปนมัสการพระพุทธบาท ที่จังหวัดสระบุรี   ประวัติเจ้าฟ้าธรรมธิเบศร   เจ้าฟ้าธรรมธิเบศร

การแก้ระบบสมการเชิงเส้นสองตัวแปร

การแก้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร  โดยการเลือกกำจัดตัวแปรใดตัวแปรหนึ่ง(x) เมื่อเลือกกำจัด x จะได้ค่า y แล้วนำค่าของตัวแปร(y) มาแทนค่าในสมการเพื่อหาค่าของตัวแปรอีกหนึ่งตัวแปร (x) ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ⇐⇐ ให้ a, b, c, d, e และ

who what where

Who What Where กับ Verb to be

สวัสดีน้องๆ ม. 2 ทุกๆ คนนะครับ วันนี้เรามาทำความเข้าใจเกี่ยวกับการใช้ Who/What/Where ร่วมกับ Verb to be กันครับ ไปดูกันเลย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1