การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

เรียนออนไลน์ คณิตศาสตร์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ คือการตรวจสอบคู่อันดับว่าคู่ไหนเป็นความสัมพันธ์ที่ตรงกับเงื่อนไขที่กำหนด จากที่เรารู้กันในบทความเรื่อง ความสัมพันธ์ว่า r จะเป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B แต่ถ้าเราใส่เงื่อนไขบางอย่างเข้าไป ความสัมพันธ์ r ที่ได้ก็อาจจะจะเปลี่ยนไปด้วย แต่ยังคงเป็นสับเซตของ A × B เหมือนเดิม

 

เช่น  ให้ A = {1, 2, 3} , B = {6, 7, 8} และ r เป็นความสัมพันธ์จาก A ไป B โดยที่  r = {(x, y) ∈ A × B : 3x < y}

จากที่เรารู้ว่า คู่อับดับที่เป็นสมาชิกของ A × B

นั่นคือ สมาชิกตัวตัวหน้า (x) มาจาก A และสมาชิกตัวหลัง (y) มาจาก B นั่นเอง

พิจารณา x = 1 จะได้ว่า 3(1) = 3 พิจารณาว่า 3 น้อยกว่าตัวไหนใน B บ้าง

จะได้ว่า 3 < 6 , 3 < 7 และ 3 < 8 นั่นคือ x = 1 จะได้ y = 6, 7, 8

ดังนั้น  (1, 6), (1, 7), (1, 8) เป็นความสัมพันธ์ใน r 

พิจารณา x = 2 จะได้ว่า 3(2) = 6 พิจารณาว่า 6 น้อยกว่าตัวไหนใน B บ้าง

จะได้ว่า 6 < 7 และ 6 < 8 นั่นคือ x = 2 จะได้ y = 7, 8

ดังนั้น (2, 7), (2, 8) เป็นความสัมพันธ์ใน r 

พิจารณา x = 3 จะได้ว่า 3(3) = 9

จะเห็นว่าไม่มีสมาชิกตัวใดใน B ที่ มากกว่า 9 เลย

ดังนั้นสรุปได้เลยว่า r = {(1, 6), (1, 7), (1, 8), (2, 7), (2, 8)}

 

ตัวอย่างการตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

 

ให้ A = {0, 1, 2} , B = {1, 2, 3, 4} และ  r เป็นความสัมพันธ์จาก A ไป B

1.) r = {(x, y) ∈ A × B : x > 1 และ y = 2}

จงเขียนความสัมพันธ์ r ในรูปแจกแจงสมาชิก

วิธีทำ 

จาก (x, y) เป็นสมาชิกของ A × B ดังนั้น x ต้องเป็นสมาชิกใน A และ y เป้นสมาชิก ใน B

จาก x > 1 ได้ว่า x = 2 (พิจารณาจากสมาชิกในเซต A)

และ y = 2

ดังนั้น r = {(2, 2)}

 

2.) r = {(x, y) ∈ A × B : 2x = y}

วิธีทำ

พิจารณา x = 0 จะได้ว่า 2(0) = 0 ได้ว่า y = 0 ซึ่ง 0 ไม่เป็นสมาชิกใน B ดังนั้น ตัด x = 0 ทิ้งได้เลย เพราะ (0, 0) ∉ A × B

พิจารณา x = 1 จะได้ว่า  2(1) = 2 ได้ว่า y = 2 จะเห็นว่า ที่ x = 1 ได้ y = 2 และ y = 2 เป็นสมาชิกใน B ดังนั้นจะได้คู่อันดับ (1, 2)

พิจารณา x = 2 จะได้ว่า 2(2) = 4 ได้ว่า  y = 4 ซึ่ง 4 เป็นสมาชิกใน B ดังนั้นจะได้คู่อันดับ (2, 4)

ดังนั้น r = {(1, 2), (2, 4)} ซึ่งเมื่อสังเกตดูน้องๆจะเห็นว่าคู่อันดับที่ได้นั้นเป็นสมาชิกใน A × B

 

3.) r = {(x, y) ∈ A × B : y = x²}

วิธีทำ

พิจารณา x = 0 จะได้ว่า  0² = 0 นั่นคือ y = 0  ซึ่ง y = 0 ไม่เป็นสมาชิกใน B ดังนั้น ตัด x = 0 ทิ้งได้เลย เพราะ (0, 0) ∉ A × B

พิจารณา x = 1 จะได้ว่า 1² = 1 นั่นคือ y = 1 ซึ่ง y = 1 เป็นสมาชิกใน B ดังนั้น ได้คู่อันดับ (1, 1)

พิจารณา x = 2 จะได้ว่า 2² = 4 นั่นคือ y = 4 ซึ่ง เป็นสมาชิกใน B ดังนั้นจะได้ (2, 4)

ดังนั้น r = {(1, 1), (2, 4)} ซึ่ง  (1, 1), (2, 4) ∈ A × B

 

วิดีโอ การตรวจสอบคู่อันดับที่เป็นความสัมธ์

 

  

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ศึกษาตัวบทและคุณค่า คัมภีร์ฉันทศาสตร์ แพทยศาสตร์สงเคราะห์

จากบทเรียนครั้งที่แล้วที่เราได้เรียนรู้เกี่ยวความเป็นมาและเนื้อหาโดยสังเขปของ คัมภีร์ฉันทศาสตร์ แพทย์ศาสตร์สงเคราะห์ กันไปแล้ว เราได้รู้ถึงที่มาความเป็นไปของวรรณคดีที่เป็นตำราแพทย์ในอดีตรวมถึงเนื้อหา ฉะนั้นบทเรียนในวันนี้จะพาน้อง ๆ ไปเจาะลึกเกี่ยวกับตัวบทเพื่อให้รู้จักกับวรรณคดีเรื่องนี้กันมากขึ้น ว่าเหตุใดจึงเป็นตำราแพทย์ที่ได้มาอยู่ในแบบเรียนภาษาไทย ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   ตัวบทเด่น ๆ ในคัมภีร์ฉันทศาสตร์ แพทย์ศาสตร์สงเคราะห์     ถอดความ เปรียบร่างกายของหญิงและชายเป็นกายนคร จิตใจเปรียบเหมือนกษัตริย์ซึ่งเป็นผู้ครอบครองสมบัติอันยิ่งใหญ่หรือก็คือร่างกาย ข้าศึกเปรียบได้กับโรคที่ทำลายร่างกายเรา พทย์เปรียบได้กับทหาร มีความชำนาญ เวลาที่ข้าศึกมาหรือเกิดโรคภัยขึ้นก็อย่างวางใจ แผ่ลามไปทุกแห่ง

คำเชื่อม Conjunction

การใช้คำสันธาน(Conjunctions)

สวัสดีค่ะนักเรียนชั้นม.3 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “การใช้คำสันธาน(Conjunctions)“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด คำสันธาน(Conjunctions)คืออะไร   คำสันธาน (Conjunctions) คือ คำที่ใช้เชื่อมระหว่างประโยคต่อประโยค คำต่อคำ หรือระหว่างกริยาต่อกริยา และอื่นๆ เช่น for, and, or, nor, so, because, since ดังตัวอย่างด้านล่างเลยจ้า ตัวอย่างเช่น เชื่อมนามกับนาม

จำนวนจริงในรูปกรณฑ์ และเลขยกกำลัง

จำนวนจริงในรูปกรณฑ์ จำนวนจริงในรูปกรณฑ์ หรือราก เขียนแทนด้วย อ่านว่า รากที่ n ของ x หรือ กรณฑ์ที่ n ของ x เราจะบอกว่า จำนวนจริง a เป็นรากที่ n ของ x ก็ต่อเมื่อ เช่น 2 เป็นรากที่

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof  จากรูป

วงรี

วงรี

วงรี วงรี จะประกอบไปด้วย 1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า 2) จุดยอด 3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก 4) ความเยื้องศูนย์กลาง (eccentricity) วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด จากกราฟ สมการรูปแบบมาตรฐาน:    จุดยอด : (a, 0) และ (-a,

การพูดอภิปราย

การพูดอภิปรายอย่างง่าย ทำได้ไม่ยาก

การพูดอภิปราย เป็นแบบการพูดซึ่งมีลักษณะคล้ายการสนทนาทั่วไป แต่ก็มีจุดที่แตกต่างกันอยู่ น้อง ๆ ทราบไหมคะว่าคืออะไร แล้วสรุปว่าการพูดอภิปรายคืออะไร มีหลักในการพูดอย่างไรได้บ้าง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทำความรู้จักและฝึกพูดให้คล่อง เพื่อที่เมื่อถึงเวลาอภิปราย จะได้ผ่านกันแบบฉลุยไร้กังวล ถ้าอยากเรียนรู้แล้วล่ะก็ ไปดูพร้อม ๆ กันเลยค่ะ   ความหมายของการพูดอภิปราย   การพูดอภิปราย หมายถึง การพูดเพื่อแสดงความคิดเห็น แลกเปลี่ยนความรู้เกี่ยวกับเรื่องใดเรื่องหนึ่ง เพื่อใช้ในการแก้ปัญหา

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1