การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

เรียนออนไลน์ คณิตศาสตร์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ คือการตรวจสอบคู่อันดับว่าคู่ไหนเป็นความสัมพันธ์ที่ตรงกับเงื่อนไขที่กำหนด จากที่เรารู้กันในบทความเรื่อง ความสัมพันธ์ว่า r จะเป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B แต่ถ้าเราใส่เงื่อนไขบางอย่างเข้าไป ความสัมพันธ์ r ที่ได้ก็อาจจะจะเปลี่ยนไปด้วย แต่ยังคงเป็นสับเซตของ A × B เหมือนเดิม

 

เช่น  ให้ A = {1, 2, 3} , B = {6, 7, 8} และ r เป็นความสัมพันธ์จาก A ไป B โดยที่  r = {(x, y) ∈ A × B : 3x < y}

จากที่เรารู้ว่า คู่อับดับที่เป็นสมาชิกของ A × B

นั่นคือ สมาชิกตัวตัวหน้า (x) มาจาก A และสมาชิกตัวหลัง (y) มาจาก B นั่นเอง

พิจารณา x = 1 จะได้ว่า 3(1) = 3 พิจารณาว่า 3 น้อยกว่าตัวไหนใน B บ้าง

จะได้ว่า 3 < 6 , 3 < 7 และ 3 < 8 นั่นคือ x = 1 จะได้ y = 6, 7, 8

ดังนั้น  (1, 6), (1, 7), (1, 8) เป็นความสัมพันธ์ใน r 

พิจารณา x = 2 จะได้ว่า 3(2) = 6 พิจารณาว่า 6 น้อยกว่าตัวไหนใน B บ้าง

จะได้ว่า 6 < 7 และ 6 < 8 นั่นคือ x = 2 จะได้ y = 7, 8

ดังนั้น (2, 7), (2, 8) เป็นความสัมพันธ์ใน r 

พิจารณา x = 3 จะได้ว่า 3(3) = 9

จะเห็นว่าไม่มีสมาชิกตัวใดใน B ที่ มากกว่า 9 เลย

ดังนั้นสรุปได้เลยว่า r = {(1, 6), (1, 7), (1, 8), (2, 7), (2, 8)}

 

ตัวอย่างการตรวจสอบคู่อันดับที่เป็นความสัมพันธ์

 

ให้ A = {0, 1, 2} , B = {1, 2, 3, 4} และ  r เป็นความสัมพันธ์จาก A ไป B

1.) r = {(x, y) ∈ A × B : x > 1 และ y = 2}

จงเขียนความสัมพันธ์ r ในรูปแจกแจงสมาชิก

วิธีทำ 

จาก (x, y) เป็นสมาชิกของ A × B ดังนั้น x ต้องเป็นสมาชิกใน A และ y เป้นสมาชิก ใน B

จาก x > 1 ได้ว่า x = 2 (พิจารณาจากสมาชิกในเซต A)

และ y = 2

ดังนั้น r = {(2, 2)}

 

2.) r = {(x, y) ∈ A × B : 2x = y}

วิธีทำ

พิจารณา x = 0 จะได้ว่า 2(0) = 0 ได้ว่า y = 0 ซึ่ง 0 ไม่เป็นสมาชิกใน B ดังนั้น ตัด x = 0 ทิ้งได้เลย เพราะ (0, 0) ∉ A × B

พิจารณา x = 1 จะได้ว่า  2(1) = 2 ได้ว่า y = 2 จะเห็นว่า ที่ x = 1 ได้ y = 2 และ y = 2 เป็นสมาชิกใน B ดังนั้นจะได้คู่อันดับ (1, 2)

พิจารณา x = 2 จะได้ว่า 2(2) = 4 ได้ว่า  y = 4 ซึ่ง 4 เป็นสมาชิกใน B ดังนั้นจะได้คู่อันดับ (2, 4)

ดังนั้น r = {(1, 2), (2, 4)} ซึ่งเมื่อสังเกตดูน้องๆจะเห็นว่าคู่อันดับที่ได้นั้นเป็นสมาชิกใน A × B

 

3.) r = {(x, y) ∈ A × B : y = x²}

วิธีทำ

พิจารณา x = 0 จะได้ว่า  0² = 0 นั่นคือ y = 0  ซึ่ง y = 0 ไม่เป็นสมาชิกใน B ดังนั้น ตัด x = 0 ทิ้งได้เลย เพราะ (0, 0) ∉ A × B

พิจารณา x = 1 จะได้ว่า 1² = 1 นั่นคือ y = 1 ซึ่ง y = 1 เป็นสมาชิกใน B ดังนั้น ได้คู่อันดับ (1, 1)

พิจารณา x = 2 จะได้ว่า 2² = 4 นั่นคือ y = 4 ซึ่ง เป็นสมาชิกใน B ดังนั้นจะได้ (2, 4)

ดังนั้น r = {(1, 1), (2, 4)} ซึ่ง  (1, 1), (2, 4) ∈ A × B

 

วิดีโอ การตรวจสอบคู่อันดับที่เป็นความสัมธ์

 

  

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สำนวนไทยที่เราควรรู้ และตัวอย่างการนำไปใช้ในชีวิตประจำวัน

น้อง ๆ เคยเป็นกันหรือเปล่าคะ เวลาที่อยากจะพูดอะไรสักอย่างแต่มันช่างยาวเหลือเกิน กว่าจะพูดออกมาหมดนอกจากคนฟังจะเบื่อแล้วยังอาจทำให้เขาไม่สนใจคำพูดของเราเลยก็เป็นไปได้ เพราะอย่างนั้นแหละค่ะในภาษาไทยของเราจึงต้องมีสิ่งที่เรียกว่าสำนวนขึ้นมาเพื่อใช้บอกเล่าเรื่องราวที่ถูกกลั่นกรองออกมาจนได้คำที่สละสลวย รวมใจความยาว ๆ ให้สั้นลง ทำให้เราไม่ต้องพูดอะไรให้ยืดยาวอีกต่อไป บทเรียนในวันนี้จะพาน้อง ๆ ไปทบทวนความรู้เรื่อง สำนวนไทย รวมถึงตัวอย่างสำนวนน่ารู้ในชีวิตประจำวันเพิ่มเติมด้วยค่ะ จะมีอะไรบ้างนั้น ไปดูกันเลย   ความหมายและลักษณะของ สำนวนไทย   สำนวน หมายถึง ถ้อยคำหรือสำนวนพูดหรือเขียนที่มีความหมายไม่ตรงกับรากศัพท์หรือตรงไปตรงมาตามพจนานุกรม แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น

เรียนออนไลน์ คณิตศาสตร์

กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟโดยใช้วิธีการหาจุดตัดของแกน x และ แกน y

เรียนรู้ที่มาของชาติกำเนิดอันยิ่งใหญ่ มหาเวสสันดรชาดก

หลายคนคงจะเคยได้ยินคำว่า มหาชาติชาดก หรือ มหาเวสสันดรชาดก กันมาบ้างแล้วผ่านสื่อต่าง ๆ แต่รู้หรือไม่คะว่าคำ ๆ นี้มีที่จากอะไร คำว่า มหาชาติ เป็นคำเรียก เวสสันดรชาดก ส่วนชาดกนั้นเป็นชื่อคัมภีร์หนึ่งของพุทธศาสนาที่กล่าวถึงอดีตชาติของพระพุทธเจ้า ดังนั้นมหาเวสสันดรชาดก จึงเป็นเรื่องราวที่เกี่ยวกับชาติกำเนิดอันหยิ่งใหญ่ของพระพุทธเจ้า น้อง ๆ คงสงสัยใช่ไหมคะว่าทำไมเวสสันดรชาดกถึงได้ชื่อว่าเป็นชาดกที่ยิ่งใหญ่ที่สุด ถ้าอยากรู้คำตอบแล้วล่ะก็ เราไปเรียนรู้ความเป็นของเรื่องนี้พร้อมกันเลยค่ะ   มหาเวสสันดรชาดก   มหาชาติชาดก

Profile Linking Verbs

มาทำความรู้จักกับ Linking Verbs ให้มากขึ้น

สวัสดีค่ะนักเรียนม.1 ที่น่ารักทุกคน วันนี้เราจะไปรู้จักกับ Linking Verbs ให้มากขึ้น แต่ก่อนอื่นไปดูความหมายของ Linking Verbs กันก่อนนะคะ ไปลุยกันเลย มาทำความรู้จักกับ Linking Verbs     Linking verbs คืออะไรกันนะ Linking แปลว่า การเชื่อม มาจากรากศัพท์ link ที่เป็นกริยาเติมด้วย

เรียนรู้บทร้องกรองสุภาษิต ตนเป็นที่พึ่งแห่งตน

การนำสุภาษิตมาแต่งเป็นบทร้อยกรอง เรียกว่า บทประพันธ์ร้อยกรองสุภาษิต ซึ่งบทที่น้อง ๆ จะได้เรียนกันในวันนี้คือบทร้อยกรองสุภาษิตเรื่อง ตนเป็นที่พึ่งแห่งตน เราไปดูกันเลยค่ะว่าที่มจากของบทร้อยกรองนี้จะเป็นอย่างไร มาจากสุภาษิตอะไร รวมไปถึงถอดความหมายตัวบท ศึกษาคำศัพท์ที่น่ารู้และศึกษาคุณค่าที่อยู่ในเรื่องด้วยค่ะ ถ้าพร้อมแล้วเราไปดูพร้อมกันเลย   ความเป็นมา ตนเป็นที่พึ่งแห่งตน     ตนเป็นที่พึ่งแห่งตน ผู้แต่งคือ นายเพิ่ม สวัสดิ์วรรณกิจ เป็นบทร้อยกรองประเภทกลอนแปด พิมพ์รวมอยู่ในหนังสือบทประพันธ์อธิบายสุภาษิตของวรรณคดีสมาคมแห่งประเทศไทย    

NokAcademy_ ม.5 M6 Gerund

Gerund พร้อมแนวข้อสอบ ม.6

  สวัสดีค่ะนักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” กันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม นั่นเองจร้า

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1