สถิติ (เส้นโค้งความถี่)

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้ได้รวบรวมความรู้เรื่อง สถิติ (เส้นโค้งความถี่)  ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง    ค่ากลางของข้อมูล และการวัดการกระจายของข้อมูล สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล) ⇐⇐

เส้นโค้งของความถี่ จะมีอยู่ 3 แบบ คือ เส้นโค้งปกติ เส้นโค้งเบ้ขวา และเส้นโค้งเบ้ซ้าย ซึ่งจะมีความสัมพันธ์กับค่ากลางของข้อมูล  ได้แก่ ค่าเฉลี่ยเลขคณิต (μ)   มัธยฐาน (Med) และฐานนิยม (Mode)  อีกทั้งยังมีความสัมพันธ์กับการกระจายของข้อมูลอีกด้วย

เส้นโค้งปกติหรือรูประฆัง

เส้นโค้งปกติหรือรูประฆัง เป็นเส้นโค้งของความถี่ของข้อมูลที่มีค่าเฉลี่ยเลขคณิต  มัธยฐาน และฐานนิยมเท่ากัน  หรืออยู่ที่จุดเดียวกันคือจุดที่มีความถี่สูงสุด  ดังรูป ซึ่งจะเกี่ยวข้องกับ สถิติ (เส้นโค้งความถี่)

เส้นโค้งปกติ แนะนำ

 

ค่าเฉลี่ยเลขคณิต = มัธยฐาน = ฐานนิยม

เส้นโค้งเบ้ทางขวาหรือทางบวก

เส้นโค้งเบ้ทางขวาหรือทางบวก เป็นเส้นโค้งของความถี่ของข้อมูลที่มีค่ากลางเรียงจากน้อยไปหามาก ฐานนิยม  มัธยฐาน  และค่าเฉลี่ยเลขคณิต  ดังรูป ซึ่งจะเกี่ยวข้องกับ สถิติ (เส้นโค้งความถี่)

เส้นโค้งเบ้ขวา

 

ฐานนิยม  <  มัธยฐาน  <  ค่าเฉลี่ยเลขคณิต

เส้นโค้งเบ้ทางซ้ายหรือทางลบ

เส้นโค้งเบ้ทางซ้ายหรือทางลบ เป็นเส้นโค้งของความถี่ของข้อมูลที่มีค่ากลางเรียงจากน้อยไปหามาก   ค่าเฉลี่ยเลขคณิต  มัธยฐาน  และฐานนิยม  ดังรูป ซึ่งจะเกี่ยวข้องกับ สถิติ (เส้นโค้งความถี่)

เส้นโค้งเบ้ซ้าย

ค่าเฉลี่ยเลขคณิต  <  มัธยฐาน  <  ฐานนิยม

สรุป

  • เส้นโค้งปกติ ค่าเฉลี่ยเลขคณิต = มัธยฐาน = ฐานนิยม
  • เส้นโค้งเบ้ทางขวา ฐานนิยม  <  มัธยฐาน  <  ค่าเฉลี่ยเลขคณิต (ค่าเฉลี่ยเลขคณิตมากที่สุด)
  • เส้นโค้งเบ้ทางซ้าย ค่าเฉลี่ยเลขคณิต  <  มัธยฐาน  <  ฐานนิยม (ฐานนิยมมากที่สุด)
การกระจายของข้อมูลเส้นโค้งปกติ

สำหรับการกระจายของข้อมูลนั้น  เมื่อเขียนเป็น เส้นโค้งความถี่  ซึ่งเป็นโค้งปกติ ข้อมูลชุดใดมีการกระจายมาก  เส้นโค้งปกติจะมีความโด่งน้อยหรือค่อนข้างแบน  แต่ถ้าข้อมูลใดมีการกระจายน้อย  เส้นโค้งปกติจะมีความโด่งมาก  ดังรูป

เส้นโค้งปกติ การกระจาย

เส้นโค้งที่มีค่าเฉลี่ยเลขคณิตเท่ากัน แต่การกระจายต่างกัน

เส้นโค้งปกติ มิว1 2

เส้นโค้งที่มีค่าเฉลี่ยเลขคณิตต่างกัน แต่การกระจายเท่ากัน

เส้นโค้งปกติ 1

 

µ  คือ ค่าเฉลี่ยเลขคณิต (µ อ่านว่า มิว)

σ คือ ส่วนเบี่ยงเบนมาตรฐาน (σ อ่านว่า ซิกมา)

โดยที่ พื้นที่ใต้เส้นโค้งปกติจะเป็นดังรูปด้านบนเสมอ คือ 0.1%, 2.2%, 13.6% และ 34.1% ซึ่งพื้นที่ใต้เส้นโค้งปกติครึ่งหนึ่ง จาก µ ไปทางซ้าย หรือจาก µ ไปทางขวา จะมีพื้นที่ใต้เส้นโค้งเท่ากับ 50%

พิจารณาข้อความที่กำหนดให้ต่อไปนี้

กำหนดให้ µ = 30, σ = 4 จงหา μ – 1σ ,  μ – 2σ ,  μ – 3σ ,  μ + 1σ , μ + 2σ , μ + 3σ  และเติมลงในเส้นโค้งปกติ

หา μ – 1σ = 30 – 1(4) = 30 – 4 = 26

หา μ – 2σ = 30 – 2(4) = 30 – 8 = 22

หา μ – 3σ = 30 – 3(4) = 30 – 12 = 18

หา μ + 1σ = 30 + 1(4) = 30 + 4 = 34

หา μ + 2σ = 30 + 2(4) = 30 + 8 = 38

หา μ + 3σ = 30 + 3(4) = 30 + 12 = 42

เขียนเส้นโค้งปกติ ได้ดังนี้

เส้นโค้งปกติ 2

ตัวอย่างที่ 1

ตัวอย่างที่ 1  ในการตรวจสอบอายุการใช้งานของแบตเตอรี่มือถือยี่ห้อหนึ่งต่อการชาร์จไฟหนึ่งครั้ง พบว่ามีการแจกแจงปกติ มีค่าเฉลี่ยเลขคณิตเท่ากับ 100 ชั่วโมง และส่วนเบี่ยงเบนมาตรฐานเท่ากับ 12 ชั่วโมง  จงหาค่าของข้อมูล

1)  แบตเตอรี่มือถือที่มีอายุการใช้งานระหว่าง 112 – 124 ชั่วโมงมีกี่เปอร์เซ็นต์

2)  แบตเตอรี่มือถือที่มีอายุการใช้งานน้อยกว่า 88 ชั่วโมงมีกี่เปอร์เซ็นต์

3)  แบตเตอรี่มือถือที่มีอายุการใช้งานระหว่าง  88 – 112 ชั่วโมงมีกี่เปอร์เซ็นต์

วิธีทำ     เนื่องจากแบตเตอรี่มือถือมีการแจกแจงปกติค่าเฉลี่ยเลขคณิต เท่ากับ 100 ชั่วโมง  ส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 12 ชั่วโมง

อธิบายเพิ่มเติม : μ = 100, σ = 12 (เนื่องจากเส้นโค้งปกติเราจะเขียน μ = 100 ไว้ตรงกลาง ตามรูปด้ายล่าง)

หา μ – 1σ = 100 – 1(12) =100 – 12 = 88

หา μ – 2σ = 100 – 2(12) =100 – 24 = 76

หา μ – 3σ = 100 – 3(12) =100 – 36 = 64

หา μ + 1σ = 100 + 1(12) =100 + 12 = 112

หา μ + 2σ = 100 + 2(12) =100 + 24 = 124

หา μ + 3σ = 100 + 3(12) =100 + 36 = 136

เส้นโค้งปกติ ตย.1

 

1)  แบตเตอรี่มือถือที่มีอายุการใช้งานระหว่าง 112 – 124 ชั่วโมง มี 13.6 %

2)  แบตเตอรี่มือถือที่มีอายุการใช้งานน้อยกว่า 88 ชั่วโมงมี 50% – 34.1% = 15.9% หรือ 0.1% + 2.2% + 13.6% = 15.9%

3)  แบตเตอรี่มือถือที่มีอายุการใช้งานระหว่าง  88 – 112 ชั่วโมงมี 34.1% + 34.1% = 68.2%

ตัวอย่างที่ 2

ตัวอย่างที่ 2  ในการแข่งขันตอบคำถามคณิตศาสตร์ระดับประเทศระดับชั้นมัธยมศึกษาปีที่ 3 มีนักเรียนเข้าร่วมแข่งขัน 1,200 คน ค่าเฉลี่ยเลขคณิตและส่วนเบี่ยงเบนมาตรฐานของคะแนนสอบเป็น 49 และ 7 คะแนน ตามลำดับ จงหา

1)  นักเรียนที่สอบได้คะแนนน้อยกว่า 56 คะแนน คิดเป็นกี่เปอร์เซ็นต์และมีประมาณกี่คน

2)  นักเรียนที่สอบได้คะแนนระหว่าง 35 และ 56 คะแนน คิดเป็นกี่เปอร์เซ็นต์และมีประมาณกี่คน

3)  นักเรียนที่สอบได้คะแนนมากกว่า 42 คะแนน คิดเป็นกี่เปอร์เซ็นต์และมีประมาณกี่คน

วิธีทำ     เนื่องจากค่าเฉลี่ยเลขคณิตและส่วนเบี่ยงเบนมาตรฐานของคะแนนสอบเป็น 45 และ 7คะแนน ตามลำดับ

อธิบายเพิ่มเติม : μ = 49, σ = 7 (เนื่องจากเส้นโค้งปกติเราจะเขียน μ = 49 ไว้ตรงกลาง ตามรูปด้ายล่าง)

หา μ – 1σ = 49 – 1(7) = 49 – 7 = 42

หา μ – 2σ = 49 – 2(7) = 49 – 14 = 35

หา μ – 3σ = 49 – 3(7) = 49 – 21 = 28

หา μ + 1σ = 49 + 1(7) = 49 + 7 = 56

หา μ + 2σ = 49 + 2(7) = 49 + 14 = 63

หา μ + 3σ = 49 + 3(7) = 49 + 21 = 70

เส้นโค้งปกติ ตย.2

1)  นักเรียนที่สอบได้คะแนนน้อยกว่า 56 คะแนน คิดเป็น 50% + 34.1% = 84.1%  มีประมาณ  \frac{84.1}{100}  x 1,200 ≈ 1,010  คน

2)  นักเรียนที่สอบได้คะแนนระหว่าง 35 และ 56 คะแนน คิดเป็น 13.6% + 34.1% + 34.1%  = 81.8%

และมีประมาณ \frac{81.8}{100}  x 1,200 ≈ 982  คน

3)  นักเรียนที่สอบได้คะแนนมากกว่า 42 คะแนน คิดเป็น 34.1% + 50% = 84.1% มีประมาณ  \frac{84.1}{100}  x 1,200 ≈ 1,010  คน

เมื่อน้องๆเรียนรู้เรื่อง สถิติ (เส้นโค้งความถี่) จะทำให้น้องๆสามารถตอบเขียนเส้นโค้งปกติและตอบคำถามได้ถูกต้อง โดยสามารถนำความรู้ที่ได้จากการเรียนเรื่องเส้นโค้งความถี่ มาประยุกต์ใช้ในการแก้โจทย์ปัญหาและหาคำตอบได้อย่างถูกต้อง

วิดีโอ เส้นโค้งปกติ

        คลิปวิดีโอนี้ได้รวบรวม วิธีแก้ปัญหาโดยใช้เส้นโค้งปกติ และนอกจากนี้ยังได้แนะนำให้รู้จักกับเส้นโค้งเบ้ขวา และเส้นโค้งเบ้ซ้าย ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค ที่จะทำให้น้องๆมองวิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

vowel sounds

การออกเสียงสระในภาษาอังกฤษ: English Vowel Sounds

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ อาทิตย์ที่แล้วพี่ได้อธิบายเรื่องการออกเสียงพยัญชนะในภาษาอังกฤษกันไปแล้ว คราวนี้เราจะมาลองดูเสียงสระในภาษาอังกฤษกันครับว่ามีอะไรบ้าง ไปดูกันเลย!

Suggesting Profile

การใช้ประโยคคำสั่ง คำขอร้อง และคำแนะนำง่ายๆ

  สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ การใช้ประโยคคำสั่ง คำขอร้อง และคำแนะนำง่ายๆ “Easy Imperative Sentences” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันเลย รูปแบบและโครงสร้างประโยคคำสั่ง Imperative sentence     Imperative sentence ในรูปแบบประโยคบอกเล่าจะ ใช้ Verb base form (V.1)

NokAcademy_ ม6Passive Modals

มารู้จักกับ Passive Modals

สวัสดีค่านักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals” ที่ใช้บ่อยพร้อม เทคนิคการจำและนำไปใช้ และทำแบบฝึกหัดท้ายบทเรียน กันค่า Let’s go! ไปลุยกันโลดเด้อ   Passive Modals คืออะไรเอ่ย   Passive Modals คือ กลุ่มของ Modal verbs ที่ใช้ในโครงสร้าง

สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล)

บทความนี้ได้รวบรวมความรู้เรื่อง ค่ากลางของข้อมูลและการกระจายของข้อมูล ซึ่งค่ากลางของข้อมูลจะประกอบด้วย ค่าเฉลี่ยเลขคณิต มัธยฐาน และฐานนิยม ส่วนการวัดการกระจายของข้อมูลจะศึกษาในเรื่องการหาส่วนเบี่ยงเบนมาตรฐาน ซึ่งน้องๆสามารถทบทวน การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ได้ที่  ⇒⇒  การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ⇐⇐ หมายเหตุ ค่าเฉลี่ยในทางคณิตศาสตร์มีหลายชนิด แต่ที่นิยมใช้คือค่าเฉลี่ยเลขคณิต การวัดค่ากลางของข้อมูล  เป็นการหาค่ากลางมาเป็นตัวแทนของข้อมูลแต่ละชุด ซึ่งมีวิธีการหาได้หลายวิธีที่นิยมกัน ได้แก่ ค่าเฉลี่ยเลขคณิต มัธยฐาน ฐานนิยม ค่าเฉลี่ยเลขคณิต (Arithmetic

สำนวนไทยที่เราควรรู้ และตัวอย่างการนำไปใช้ในชีวิตประจำวัน

น้อง ๆ เคยเป็นกันหรือเปล่าคะ เวลาที่อยากจะพูดอะไรสักอย่างแต่มันช่างยาวเหลือเกิน กว่าจะพูดออกมาหมดนอกจากคนฟังจะเบื่อแล้วยังอาจทำให้เขาไม่สนใจคำพูดของเราเลยก็เป็นไปได้ เพราะอย่างนั้นแหละค่ะในภาษาไทยของเราจึงต้องมีสิ่งที่เรียกว่าสำนวนขึ้นมาเพื่อใช้บอกเล่าเรื่องราวที่ถูกกลั่นกรองออกมาจนได้คำที่สละสลวย รวมใจความยาว ๆ ให้สั้นลง ทำให้เราไม่ต้องพูดอะไรให้ยืดยาวอีกต่อไป บทเรียนในวันนี้จะพาน้อง ๆ ไปทบทวนความรู้เรื่อง สำนวนไทย รวมถึงตัวอย่างสำนวนน่ารู้ในชีวิตประจำวันเพิ่มเติมด้วยค่ะ จะมีอะไรบ้างนั้น ไปดูกันเลย   ความหมายและลักษณะของ สำนวนไทย   สำนวน หมายถึง ถ้อยคำหรือสำนวนพูดหรือเขียนที่มีความหมายไม่ตรงกับรากศัพท์หรือตรงไปตรงมาตามพจนานุกรม แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น เป็นกราฟที่นิยมใช้เเสดงความเปลี่ยนเเปลงของข้อมูลของข้อมูลที่ได้จากการเก็บรวบรวมข้อมูล โดยเรียงข้อมูลตามลำดับก่อนหลังของเวลาที่ข้อมูลนั้น ๆ เกิดขึ้น ทำให้เห็นเเนวโน้มของข้อมูลเเละช่วยให้เห็นการเปลี่ยนเเปลงของข้อมูลได้อย่างรวดเร็ว รวมไปถึงเเสดงถึงความสัมพันธ์ต่าง ๆ ของข้อมูล ซึ่งสามารถนำไปใช้ในการพยากรณ์เกี่ยวกับข้อมูลนั้น ๆ ได้ ตัวอย่างรูปเเบบของกราฟเส้นที่สามารถพบเห็นได้ทั่วไปในชีวิตประจำวัน ตัวอย่างการนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยกราฟเส้น  ตัวอย่างที่ 1 จงเขียนกราฟเเสดงจำนวนผลไม้ที่ถูกขายตามข้อมูลดังนี้ วิธีทำ เริ่มจากการสร้างเเกน x เเละเเกน y โดยให้เเกน x เป็น

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1