สถิติ (เส้นโค้งความถี่)

สถิติ (เส้นโค้งความถี่)

สารบัญ

บทความนี้ได้รวบรวมความรู้เรื่อง สถิติ (เส้นโค้งความถี่)  ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง    ค่ากลางของข้อมูล และการวัดการกระจายของข้อมูล สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล) ⇐⇐

เส้นโค้งของความถี่ จะมีอยู่ 3 แบบ คือ เส้นโค้งปกติ เส้นโค้งเบ้ขวา และเส้นโค้งเบ้ซ้าย ซึ่งจะมีความสัมพันธ์กับค่ากลางของข้อมูล  ได้แก่ ค่าเฉลี่ยเลขคณิต (μ)   มัธยฐาน (Med) และฐานนิยม (Mode)  อีกทั้งยังมีความสัมพันธ์กับการกระจายของข้อมูลอีกด้วย

เส้นโค้งปกติหรือรูประฆัง

เส้นโค้งปกติหรือรูประฆัง เป็นเส้นโค้งของความถี่ของข้อมูลที่มีค่าเฉลี่ยเลขคณิต  มัธยฐาน และฐานนิยมเท่ากัน  หรืออยู่ที่จุดเดียวกันคือจุดที่มีความถี่สูงสุด  ดังรูป ซึ่งจะเกี่ยวข้องกับ สถิติ (เส้นโค้งความถี่)

เส้นโค้งปกติ แนะนำ

 

ค่าเฉลี่ยเลขคณิต = มัธยฐาน = ฐานนิยม

เส้นโค้งเบ้ทางขวาหรือทางบวก

เส้นโค้งเบ้ทางขวาหรือทางบวก เป็นเส้นโค้งของความถี่ของข้อมูลที่มีค่ากลางเรียงจากน้อยไปหามาก ฐานนิยม  มัธยฐาน  และค่าเฉลี่ยเลขคณิต  ดังรูป ซึ่งจะเกี่ยวข้องกับ สถิติ (เส้นโค้งความถี่)

เส้นโค้งเบ้ขวา

 

ฐานนิยม  <  มัธยฐาน  <  ค่าเฉลี่ยเลขคณิต

เส้นโค้งเบ้ทางซ้ายหรือทางลบ

เส้นโค้งเบ้ทางซ้ายหรือทางลบ เป็นเส้นโค้งของความถี่ของข้อมูลที่มีค่ากลางเรียงจากน้อยไปหามาก   ค่าเฉลี่ยเลขคณิต  มัธยฐาน  และฐานนิยม  ดังรูป ซึ่งจะเกี่ยวข้องกับ สถิติ (เส้นโค้งความถี่)

เส้นโค้งเบ้ซ้าย

ค่าเฉลี่ยเลขคณิต  <  มัธยฐาน  <  ฐานนิยม

สรุป

  • เส้นโค้งปกติ ค่าเฉลี่ยเลขคณิต = มัธยฐาน = ฐานนิยม
  • เส้นโค้งเบ้ทางขวา ฐานนิยม  <  มัธยฐาน  <  ค่าเฉลี่ยเลขคณิต (ค่าเฉลี่ยเลขคณิตมากที่สุด)
  • เส้นโค้งเบ้ทางซ้าย ค่าเฉลี่ยเลขคณิต  <  มัธยฐาน  <  ฐานนิยม (ฐานนิยมมากที่สุด)
การกระจายของข้อมูลเส้นโค้งปกติ

สำหรับการกระจายของข้อมูลนั้น  เมื่อเขียนเป็น เส้นโค้งความถี่  ซึ่งเป็นโค้งปกติ ข้อมูลชุดใดมีการกระจายมาก  เส้นโค้งปกติจะมีความโด่งน้อยหรือค่อนข้างแบน  แต่ถ้าข้อมูลใดมีการกระจายน้อย  เส้นโค้งปกติจะมีความโด่งมาก  ดังรูป

เส้นโค้งปกติ การกระจาย

เส้นโค้งที่มีค่าเฉลี่ยเลขคณิตเท่ากัน แต่การกระจายต่างกัน

เส้นโค้งปกติ มิว1 2

เส้นโค้งที่มีค่าเฉลี่ยเลขคณิตต่างกัน แต่การกระจายเท่ากัน

เส้นโค้งปกติ 1

 

µ  คือ ค่าเฉลี่ยเลขคณิต (µ อ่านว่า มิว)

σ คือ ส่วนเบี่ยงเบนมาตรฐาน (σ อ่านว่า ซิกมา)

โดยที่ พื้นที่ใต้เส้นโค้งปกติจะเป็นดังรูปด้านบนเสมอ คือ 0.1%, 2.2%, 13.6% และ 34.1% ซึ่งพื้นที่ใต้เส้นโค้งปกติครึ่งหนึ่ง จาก µ ไปทางซ้าย หรือจาก µ ไปทางขวา จะมีพื้นที่ใต้เส้นโค้งเท่ากับ 50%

พิจารณาข้อความที่กำหนดให้ต่อไปนี้

กำหนดให้ µ = 30, σ = 4 จงหา μ – 1σ ,  μ – 2σ ,  μ – 3σ ,  μ + 1σ , μ + 2σ , μ + 3σ  และเติมลงในเส้นโค้งปกติ

หา μ – 1σ = 30 – 1(4) = 30 – 4 = 26

หา μ – 2σ = 30 – 2(4) = 30 – 8 = 22

หา μ – 3σ = 30 – 3(4) = 30 – 12 = 18

หา μ + 1σ = 30 + 1(4) = 30 + 4 = 34

หา μ + 2σ = 30 + 2(4) = 30 + 8 = 38

หา μ + 3σ = 30 + 3(4) = 30 + 12 = 42

เขียนเส้นโค้งปกติ ได้ดังนี้

เส้นโค้งปกติ 2

ตัวอย่างที่ 1

ตัวอย่างที่ 1  ในการตรวจสอบอายุการใช้งานของแบตเตอรี่มือถือยี่ห้อหนึ่งต่อการชาร์จไฟหนึ่งครั้ง พบว่ามีการแจกแจงปกติ มีค่าเฉลี่ยเลขคณิตเท่ากับ 100 ชั่วโมง และส่วนเบี่ยงเบนมาตรฐานเท่ากับ 12 ชั่วโมง  จงหาค่าของข้อมูล

1)  แบตเตอรี่มือถือที่มีอายุการใช้งานระหว่าง 112 – 124 ชั่วโมงมีกี่เปอร์เซ็นต์

2)  แบตเตอรี่มือถือที่มีอายุการใช้งานน้อยกว่า 88 ชั่วโมงมีกี่เปอร์เซ็นต์

3)  แบตเตอรี่มือถือที่มีอายุการใช้งานระหว่าง  88 – 112 ชั่วโมงมีกี่เปอร์เซ็นต์

วิธีทำ     เนื่องจากแบตเตอรี่มือถือมีการแจกแจงปกติค่าเฉลี่ยเลขคณิต เท่ากับ 100 ชั่วโมง  ส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 12 ชั่วโมง

อธิบายเพิ่มเติม : μ = 100, σ = 12 (เนื่องจากเส้นโค้งปกติเราจะเขียน μ = 100 ไว้ตรงกลาง ตามรูปด้ายล่าง)

หา μ – 1σ = 100 – 1(12) =100 – 12 = 88

หา μ – 2σ = 100 – 2(12) =100 – 24 = 76

หา μ – 3σ = 100 – 3(12) =100 – 36 = 64

หา μ + 1σ = 100 + 1(12) =100 + 12 = 112

หา μ + 2σ = 100 + 2(12) =100 + 24 = 124

หา μ + 3σ = 100 + 3(12) =100 + 36 = 136

เส้นโค้งปกติ ตย.1

 

1)  แบตเตอรี่มือถือที่มีอายุการใช้งานระหว่าง 112 – 124 ชั่วโมง มี 13.6 %

2)  แบตเตอรี่มือถือที่มีอายุการใช้งานน้อยกว่า 88 ชั่วโมงมี 50% – 34.1% = 15.9% หรือ 0.1% + 2.2% + 13.6% = 15.9%

3)  แบตเตอรี่มือถือที่มีอายุการใช้งานระหว่าง  88 – 112 ชั่วโมงมี 34.1% + 34.1% = 68.2%

ตัวอย่างที่ 2

ตัวอย่างที่ 2  ในการแข่งขันตอบคำถามคณิตศาสตร์ระดับประเทศระดับชั้นมัธยมศึกษาปีที่ 3 มีนักเรียนเข้าร่วมแข่งขัน 1,200 คน ค่าเฉลี่ยเลขคณิตและส่วนเบี่ยงเบนมาตรฐานของคะแนนสอบเป็น 49 และ 7 คะแนน ตามลำดับ จงหา

1)  นักเรียนที่สอบได้คะแนนน้อยกว่า 56 คะแนน คิดเป็นกี่เปอร์เซ็นต์และมีประมาณกี่คน

2)  นักเรียนที่สอบได้คะแนนระหว่าง 35 และ 56 คะแนน คิดเป็นกี่เปอร์เซ็นต์และมีประมาณกี่คน

3)  นักเรียนที่สอบได้คะแนนมากกว่า 42 คะแนน คิดเป็นกี่เปอร์เซ็นต์และมีประมาณกี่คน

วิธีทำ     เนื่องจากค่าเฉลี่ยเลขคณิตและส่วนเบี่ยงเบนมาตรฐานของคะแนนสอบเป็น 45 และ 7คะแนน ตามลำดับ

อธิบายเพิ่มเติม : μ = 49, σ = 7 (เนื่องจากเส้นโค้งปกติเราจะเขียน μ = 49 ไว้ตรงกลาง ตามรูปด้ายล่าง)

หา μ – 1σ = 49 – 1(7) = 49 – 7 = 42

หา μ – 2σ = 49 – 2(7) = 49 – 14 = 35

หา μ – 3σ = 49 – 3(7) = 49 – 21 = 28

หา μ + 1σ = 49 + 1(7) = 49 + 7 = 56

หา μ + 2σ = 49 + 2(7) = 49 + 14 = 63

หา μ + 3σ = 49 + 3(7) = 49 + 21 = 70

เส้นโค้งปกติ ตย.2

1)  นักเรียนที่สอบได้คะแนนน้อยกว่า 56 คะแนน คิดเป็น 50% + 34.1% = 84.1%  มีประมาณ  \frac{84.1}{100}  x 1,200 ≈ 1,010  คน

2)  นักเรียนที่สอบได้คะแนนระหว่าง 35 และ 56 คะแนน คิดเป็น 13.6% + 34.1% + 34.1%  = 81.8%

และมีประมาณ \frac{81.8}{100}  x 1,200 ≈ 982  คน

3)  นักเรียนที่สอบได้คะแนนมากกว่า 42 คะแนน คิดเป็น 34.1% + 50% = 84.1% มีประมาณ  \frac{84.1}{100}  x 1,200 ≈ 1,010  คน

เมื่อน้องๆเรียนรู้เรื่อง สถิติ (เส้นโค้งความถี่) จะทำให้น้องๆสามารถตอบเขียนเส้นโค้งปกติและตอบคำถามได้ถูกต้อง โดยสามารถนำความรู้ที่ได้จากการเรียนเรื่องเส้นโค้งความถี่ มาประยุกต์ใช้ในการแก้โจทย์ปัญหาและหาคำตอบได้อย่างถูกต้อง

วิดีโอ เส้นโค้งปกติ

        คลิปวิดีโอนี้ได้รวบรวม วิธีแก้ปัญหาโดยใช้เส้นโค้งปกติ และนอกจากนี้ยังได้แนะนำให้รู้จักกับเส้นโค้งเบ้ขวา และเส้นโค้งเบ้ซ้าย ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค ที่จะทำให้น้องๆมองวิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Imperative Sentence

Imperative Sentence: การใช้ประโยคคำสั่ง คำขอร้อง และคำแนะนำง่ายๆ

สวัสดีครับน้องๆ 🙂 วันนี้เราจะมาเรียนรู้เรื่องประโยคคำสั่ง คำขอร้อง และคำแนะนำในภาษาอังกฤษ หรือที่เรียกว่า “Imperative Sentence” กันครับ

ตัวหารร่วมมาก (ห.ร.ม.)

ตัวหารร่วมมาก (ห.ร.ม.)

             ตัวหารร่วมมาก (ห.ร.ม.) ตัวหารร่วมมาก (ห.ร.ม.) ของจำนวนนับตั้งแต่สองจำนวนขึ้นไปนั้น  เป็นการหาตัวหารร่วมหรือตัวประกอบร่วมที่มีค่ามากที่สุดของจำนวนนับเหล่านั้น ในบทความนี้ได้รวบรวมวิธี การหา ห.ร.ม. ไว้ทั้งหมด 3 วิธี น้องๆอาจคุ้นชินกับ การหา ห.ร.ม. โดยวิธีตั้งหาร แต่น้องๆทราบหรือไม่ว่าวิธีการหา ห.ร.ม. มีวิธีการดังต่อไปนี้ การหา ห.ร.ม. โดยการหาผลคูณร่วม การหา ห.ร.ม.

M3 Past Passive

Past Passive คืออะไร

Hi guys! สวัสดีค่ะนักเรียนชั้นม.3 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   Past Passive คืออะไร   Past หมายถึง อดีต ส่วน Passive มาจากโครงสร้างของ Passive voice (ประโยคที่ประธานถูกกระทำ เน้นกรรม) เมื่อนำมารวมกันแล้วPast

โจทย์ปัญหา ห.ร.ม. และค.ร.น.

โจทย์ปัญหาเกี่ยวกับ ห.ร.ม. และ ค.ร.น.

บทความนี้เป็นเรื่องการแก้ โจทย์ปัญหาเกี่ยวกับ ห.ร.ม. และ ค.ร.น ซึ่งโจทย์ที่ได้นำมาเป็นตัวอย่างจะประกอบด้วยการวิเคราะห์โจทย์ปัญหา การเลือกใช้วิธีการแก้โจทย์ปัญหา รวมไปถึงการแสดงวิธีทำอย่างละเอียด หวังว่าน้องๆจะสามารถนำข้อมูลเหล่านี้ไปใช้ได้จริงกับโจทย์ปัญหาในห้องเรียน ซึงเป็นเเรื่องย่อยของ ห.ร.ม. และ ค.ร.น. ป.6

NokAcademy_ม5 การใช้ Modal Auxiliaries

Modal Auxiliaries ที่สำคัญ

สวัสดีค่านักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modal Auxiliaries หรือ Modal verbs “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า รู้จักกับ Modal Auxiliaries   Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal verbs หรือ 

ร้อยละ

การคำนวณร้อยละในชีวิตประจำวัน

บทความนี้เราจะได้เรียนรู้ความหมายของคำว่าร้อยละ หรือเปอร์เซ็นต์ รวมทั้งความสัมพันธ์ของอัตราส่วนที่คิดคำนวณเป็นร้อยละ หรือเปอร์เซ็นต์ ที่จะทำให้เราสามารถนำไปใช้ได้จริงในชีวิตประจำวัน