ปริมาตรของปริซึมและทรงกระบอก

ในบทความนี้จะกล่าวความหมายและหกในการคิดคำนวณหาปริมาตรของปริซึมและทรงกระบอก
Picture of tucksaga
tucksaga

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ในทางคณิตศาสตร์ เราอาจคำนวณหาปริมาตรของสิ่งของต่างๆได้โดยไม่ต้องใช้การแทนที่น้ำ ในบทเรียนนี้นักเรียนจะได้เรียนการหาปริมาตรของรูปเรขาคณิตสามมิติหลายชนิด ซึ่งในกรณีที่รูปเรขาคณิตนั้นมีฐานทั้งสองข้างเป็นรูปเหลี่ยมที่เท่ากันทุกประการหรือเป็นวงกลมที่เท่ากันทุกประการและอยู่ในระนาบที่ขนานกัน นั่นมายถึง ปริมาตรของปริซึมและทรงกระบอก

ปริซึมและทรงกระบอกในชีวิตประจำวัน

  1. บุคคลในหลายสาขาอาชีพต้องเข้าใจและชำนาญในเรื่องของการวัด การชั่ง การตวง และเรื่องที่เกี่ยวกับปริมาตรเป็นอย่างดี ไม่เช่นนั้นอาจทำให้เกิดข้อผิดพลาดและเสียหาย เช่น วิศวกรอาจออกแบบโครงสร้างของสิ่งก่อสร้างต่าง ๆ ได้ไม่แข็งแรงพอ นักวิทยาศาสตร์อาจทำการทดลองแล้วผิดพลาดทำให้เกิดการระเบิด หรือพ่อครัวอาจปรุงอาหารแล้วได้รสชาติไม่คงที่
  2. สำหรับบุคคลทั่วไป การเรียนรู้และใช้ความรู้เกี่ยวกับปริมาตรจะช่วยให้เราเป็นผู้บริโภคที่ฉลาดในการเลือกซื้อสินค้า รู้จักเปรียบเทียบราคาของสินค้าต่อหน่วยปริมาตร ทำให้เลือกซื้อสินค้าได้ถูกกว่าและช่วยให้เราประหยัดค่าใช้จ่ายได้
  3. เมื่อกล่าวถึงการวัดความจุ จะหมายถึงการหาปริมาตรการหาปริมาตรของวัตถุใด ๆ อาจทำได้โดยการจมวัตถุนั้นลงในภาชนะที่มีน้ำอยู่ ตราบใดที่วัตถุไม่ละลายหรือดูดซับน้ำ ปริมาตรของน้ำส่วนที่เพิ่มขึ้น หรือปริมาตรของน้ำที่ล้นออกมาในกรณีที่เดิมมีน้ำอยู่เต็มภาชนะพอดี จะเท่ากับปริมาตรของวัตถุนั้น วิธีการนี้เป็นการหาปริมาตรของวัตถุโดยการแทนที่น้ำ

ปริมาตรทรงกระบอก

ปริมาตรของปริซึม

            ทรงสี่เหลี่ยมมุมฉากเป็นปริซึมชนิดหนึ่งที่เรียกว่า ปริซึมสี่เหลี่ยมมุมฉาก นักเรียนรู้จักการหาปริมาตรของทรงสี่เหลี่ยมมุมฉากมาแล้ว ดังนั้น สูตรการหาปริมาตรของปริซึมสี่เหลี่ยมมุมฉาก จึงเป็นสูตรเดียวกันกับสูตรการหาปริมาตรของทรงสี่เหลี่ยมมุมฉาก กล่าวคือ

 

ปริมาตรของปริซึมสี่เหลี่ยมมุมฉาก = ความกว้าง x ความยาว x ความสูง

                                  =พื้นที่ฐาน x ความสูง

 

            สำหรับปริมาตรของปริซึมสามเหลี่ยมใด ๆ หาได้โดยอาศัยวิธีหาปริมาตรของปริซึมสามเหลี่ยมมุมฉากดังนี้

            ให้นักเรียนพิจารณาการตัดปริซึมสี่เหลี่ยมมุมฉากตามระนาบที่แรเงาดังแสดงในรูป จะได้รูปเรขาคณิตสามมิติสองรูปที่มีขนาดและรูปร่างเป็นอย่างเดียวกัน รูปเรขาคณิตสามมิติทั้งสองรูปเป็นปริซึมสามเหลี่ยมมุมฉากที่มีปริมาตรเท่ากัน แต่ละรูปมีปริมาตรเป็นครึ่งหนึ่งของปริมาตรของปริซึมสี่เหลี่ยมมุมฉาก

ปริซึม

            เราสามารถนำสูตรการหาปริมาตรของปริซึมสามเหลี่ยมใด ๆ ไปหาสูตรของปริซึมที่มีฐานเป็นรูปหลายเหลี่ยมได้โดยแบ่งฐานของปริซึมหลายเหลี่ยมนั้นออกเป็นรูปสามเหลี่ยมหลาย ๆ รูปตัวอย่างเช่นเราแบ่งปริซึมห้าเหลี่ยมซึ่งสูง h หน่วยออกเป็นปริซึมสามเหลี่ยม 3 รูปได้ ดังนี้

ปริมาตรของปริซึม

ปริมาตรของทรงกระบอก

            นักเรียนลองนึกภาพของรูปหลายเหลี่ยมด้านเท่ามุมเท่าตามลำดับที่กำหนดให้ข้างล่างนี้ เริ่มจากรูปสามเหลี่ยมด้านเท่า รูปสี่เหลี่ยมจัตุรัส รูปห้าเหลี่ยมด้านเท่ามุมเท่า รูปหกเหลี่ยมด้านเท่ามุมเท่า รูปเจ็ดเหลี่ยมด้านเท่ามุมเท่า และรูปแปดเหลี่ยมด้านเท่ามุมเท่า จะสังเกตเห็นว่ายิ่งจำนวนด้านมีมากขึ้นเท่าใด รูปหลายเหลี่ยมด้านเท่ามุมเท่าเหล่านั้นก็จะมีรูปร่างใกล้เคียงกับวงกลมมากขึ้นตามไปด้วย

รูปหลายเหลี่ยม

            เราอาจกล่าวได้ว่า ทรงกระบอกจึงมีลักษณะใกล้เคียงกับปริซึมที่มีฐานเป็นรูปหลายเหลี่ยมด้านเท่ามุมเท่าที่มีจำนวนด้านมาก ๆ ดังนั้นการหาปริมาตรของทรงกระบอกจึงหาได้ในทำนองเดียวกันกับการหาปริมาตรของปริซึมนั่นเอง

ปริมาตรทรงกระบอก

คลิปวิดีโอเรื่องปริมาตรของปริซึมและทรงกระบอก

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การแก้ระบบสมการเชิงเส้นสองตัวแปร

การแก้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร  โดยการเลือกกำจัดตัวแปรใดตัวแปรหนึ่ง(x) เมื่อเลือกกำจัด x จะได้ค่า y แล้วนำค่าของตัวแปร(y) มาแทนค่าในสมการเพื่อหาค่าของตัวแปรอีกหนึ่งตัวแปร (x) ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ⇐⇐ ให้ a, b, c, d, e และ

โจทย์ปัญหาการคูณทศนิยม

จากบทความที่แล้วเราได้วิเคราะห์โจทย์ปัญหาการบวกและการลบทศนิยมไปแล้ว บทความนี้จึงจะเป็นการวิเคราะห์โจทย์ปัญหาที่เกี่ยวกับการคูณ รวมไปถึงการแสดงวิธีทำที่จะทำให้น้อง ๆ เข้าใจ และสามารถนำไปใช้ได้จริง

อัตราส่วนของจำนวนหลายๆจำนวน

อัตราส่วนของจำนวนหลายๆจำนวน

อัตราส่วนของจำนวนหลายๆจำนวน บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง อัตราส่วนของจำนวนหลายๆจำนวน ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย ซึ่งก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง อัตราส่วนที่เท่ากัน โดยการที่จะหาอัตราส่วนของจำนวนหลายๆจำนวนหรือเรียกอีกอย่างว่า อัตราส่วนต่อเนื่อง ได้นั้น น้องๆ จำเป็นต้องหา ค.ร.น. ของตัวร่วม ดังนั้นเรามาทบทวนวิธีการหา ค.ร.น. กันก่อนนะคะ จงหา ค.ร.น. ของ 3, 6 และ 12 3) 3     

วิเคราะห์ สังเคราะห์ ประเมินค่า 3 วิธีที่จะช่วยพัฒนาความคิดให้เป็นระบบ

การคิด คือ กระบวนการทำงานของสมองที่ตอบสนองต่อสิ่งแวดล้อม โดยอาศัยประสบการณ์ความรู้และสภาพแวดล้อมมาพัฒนาการคิดและแสดงออกมาอย่างมีระบบ บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเจาะลึกถึงวิธีการคิดทั้ง 3 แบบคือ วิเคราะห์ สังเคราะห์ และ ประเมินค่า ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   การพัฒนาและแสดงความคิด   มนุษย์สามารถแสดงความคิดออกมาได้โดยการใช้ภาษา ซึ่งการใช้ภาษานั้นก็คือวิธีการถ่ายทอดความคิดที่อยู่ในหัวของเราออกมาให้คนอื่นเข้าใจและรู้ว่าเรามีความคิดต่อสิ่งนั้น ๆ อย่างไรบ้างไม่ว่าจะเป็นการพูดหรือการเขียน ดังนั้นการพัฒนาความคิดจึงเป็นสิ่งสำคัญ โดยวิธีการคิดสามารถแบ่งได้เป็น 3 ประเภทดังนี้

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1