ความน่าจะเป็นของเหตุการณ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความน่าจะเป็นของเหตุการณ์

บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐

ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ

โดยที่  n(E)  แทน  จำนวนผลลัพธ์ทั้งหมดของเหตุการณ์ที่เราสนใจ

                       n(S)  แทน  จำนวนผลลัพธ์ทั้งหมดที่จะเกิดขึ้นได้

  P(E)  แทน ความน่าจะเป็นของเหตุการณ์

ดังนั้น   P(E)   =  \frac{n(E)}{n(S)}

ข้อควรจำ

  1. 0 ≤ P(E) ≤ 1
  2. ถ้า P(E) = 0  เหตุการณ์นั้นๆ จะไม่มีโอกาสเกิดขึ้นเลย
  3. ถ้า P(E) = 1  เหตุการณ์นั้นๆ เกิดขึ้นแน่นอน

ตัวอย่างที่ 1

ตัวอย่างที่ 1 จากการโยนลูกเต๋า 2 ลูก  1 ครั้ง  จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

2) เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

3) เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

วิธีทำ  หา S จากการทอดลูกเต๋า 2  ลูก 1 ครั้ง ได้ดังนี้

S  =  { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

            (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

                      (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

n(S)  =  36

1) เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

อธิบายเพิ่มเติม : ผลรวมของแต้มมากกว่าหรือเท่ากับ 11 หมายความว่า เมื่อนำแต้มของลูกเต๋า 2 ลูกมาบวกกัน แล้วได้ผลลัพธ์เท่ากับ 11 และมากกว่า 11

ให้ E1 แทน เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

E1           =    { (5, 6) , (6, 5 ) , ( 6, 6) }

n (E1)     =    3

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{3}{36} = \frac{1}{12}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11 เท่ากับ \frac{1}{12}

2) เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

อธิบายเพิ่มเติม : ผลรวมของแต้มเป็นจำนวนคู่ จะต้องเกิดจากแต้มคี่ทั้งสองลูกและแต้มคู่ทั้งสองลูก

ให้ E2 แทน เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

E2  =  { (1,1) , (1,3) , (1,5) , (2,2) , (2,4) , (2,6) , (3,1) , (3,3) , (3,5) , (4,2) , (4,4) , (4,6) ,

                         (5,1) ,(5,3) ,(5,5),(6,2) ,(6,4) ,(6,6) }

n(E2)   =  18

P(E2)   =  \frac{18}{36}  =  \frac{1}{2}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่ เท่ากับ \frac{1}{2}

3) เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

อธิบายเพิ่มเติม : ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก หมายความว่า ขึ้นแต้ม 1 หนึ่งลูกหรือสองลูกก็ได้

ให้ E3  แทน เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

E3           =   { (1,1) ,(1,2) ,((1,3) ,(1,4) ,(1,5) ,(1,6) ,(2,1) ,(3,1) ,(4,1) ,(5,1) ,(6,1) }

n(E3)      =   11

P(E3)      =  \frac{11}{36}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก เท่ากับ \frac{11}{36}

ตัวอย่างที่ 2

ตัวอย่างที่ 2    ครอบครัวครอบครัวหนึ่ง  มีบุตร 2 คน  จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

2) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

3) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน

4) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

วิธีทำ     ให้         ช  แทน บุตรชาย

       ญ  แทน บุตรหญิง

  S =  {(ช, ช), (ช, ญ), (ญ, ช), (ญ, ญ)}

   n(S) = 4

โดยที่  สมาชิกตัวแรกของคู่อันดับแสดงผลลัพธ์ที่อาจจะเกิดขึ้นได้ของการมีบุตรคนแรก และสมาชิกตัวที่สองของคู่อันดับแสดงผลลัพธ์ที่อาจจะเกิดขึ้นได้ของการมีบุตรคนที่สอง

1) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

ให้ E1 แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

E1 = {(ช, ญ)}

n (E1)     =    1

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{1}{4}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง เท่ากับ \frac{1}{4}

2) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

ให้ E2 แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

E2  =  { (ช, ญ) , (ญ, ช)) }

n(E2)   =  2

P(E2)   =  \frac{2}{4}  =  \frac{1}{2}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน เท่ากับ \frac{1}{2}

3) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน

เนื่องจากครอบครัวนี้มีบุตรเพียง 2 คนเท่านั้น เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน จึงเป็น 0

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน เท่ากับ 0

4) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

ให้ E3  แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

E3           =  {(ช, ช), (ช, ญ), (ญ, ช), (ญ, ญ)}

n(E3)      =   4

P(E3)      =  \frac{4}{4} = 1

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้  เท่ากับ  1

ตัวอย่างที่ 3

ตัวอย่างที่ 3    โยนเหรียญ 1 เหรียญ 3 ครั้ง จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

2) เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

3) เหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ

วิธีทำ  ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้จากการทดลองสุ่มนี้มี 8 แบบ ดังนี้

ความน่าจะเป็นของเหตุการณ์ 3

  S =  {HHH, HHT, HTH, HTT, THH, THT, TTH , TTT}

  n(S) = 8

1) เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

ให้ E1 แทน เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

E1 = {HHH, HHT, HTH , THH}

n (E1)     =    4

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{4}{8}\frac{1}{2}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย เท่ากับ \frac{1}{2}

2) เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

ให้ E2 แทน เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

E2  =  { HTT, TTH , TTT }

n(E2)   =  3

P(E2)   =  \frac{3}{8}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกก้อยติดต่อกัน เท่ากับ  \frac{3}{8}

3) เหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ

อธิบายเพิ่มเติม : เหรียญออกหัวอย่างน้อยหนึ่งเหรียญ  หมายความว่า เหรียญออกหัวหนึ่งเหรียญ สองเหรียญหรือสามเหรียญก็ได้

ให้ E3  แทน เหตุการณ์ที่ออกหัวอย่างน้อย 1 เหรียญ

E3           =  {HHH, HHT, HTH, HTT, THH, THT , TTH}

n(E3)      =   7

P(E3)      =  \frac{7}{8}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ เท่ากับ  \frac{7}{8}

ตัวอย่างที่ 4

ตัวอย่างที่ 4  สุ่มหยิบลูกบอล 1 ลูก  จากกล่องที่มีลูกบอลสีขาว 5 ลูก จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่หยิบได้ลูกบอลสีขาว

2) เหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน

วิธีทำ     กำหนดให้  ข₁, ข₂, ข₃, ข₄  และ ข₅  แทนลูกบอลสีขาวทั้ง 5 ลูก

ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้จากการทดลองสุ่มมี 5 แบบ คือ ข₁, ข₂, ข₃, ข₄  หรือ ข₅ 

นั่นคือ จำนวนผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้ เท่ากับ 5  หรือ  n(S) = 5

1) เหตุการณ์ที่หยิบได้ลูกบอลสีขาว

เหตุการณ์ที่หยิบได้ลูกบอลสีขาว มีผลลัพธ์ คือ ข₁, ข₂, ข₃, ข₄  หรือ ข₅ 

จะได้  จำนวนผลลัพธ์ของเหตุการณ์เป็น 5   หรือ  n(E) = 5

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่หยิบได้ลูกบอลสีขาว เท่ากับ  \frac{5}{5} = 1  หรือ P(E) = 1

2) เหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน

เนื่องจากไม่มีลูกบอลสีน้ำเงินอยู่ภายในกล่อง

จะได้  จำนวนผลลัพธ์ที่หยิบได้ลูกบอลสีน้ำเงิน เป็น 0

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน เท่ากับ 0

จาก ตัวอย่างที่ 4 จะสังเกตเห็นว่าเหตุการณ์ที่หยิบได้ลูกบอลสีขาวเป็น เหตุการณ์ที่เกิดขึ้นแน่นอน มีความน่าจะเป็นของเหตุการณ์ เท่ากับ 1 และเหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงินเป็น เหตุการณ์ที่ไม่เกิดขึ้นแน่นอน มีความน่าจะเป็น เท่ากับ 0

วิดีโอ ความน่าจะเป็นของเหตุการณ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม เช่น {(1, a), (2, b), (3, a), (4, c)}  จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ จัดรูปใหม่ ได้เป็น (อ่านว่าล็อก x ฐาน

หลักการคูณทศนิยม พร้อมตัวอย่างที่เข้าใจง่าย

บทความนี้จะพาน้อง ๆมาทำความเข้าใจกับหลักการคูณทศนิยมในแต่ละรูปแบบ พร้อมทั้งอธิบายหลักการและยกตัวอย่างวิธีคิดในแต่ละรูปแบบของการคูณทศนิยม ให้น้อง ๆสามารถนำไปปรับใช้กับการหาคำตอบจากแบบฝึกหัดในห้องเรียนได้จริง

การชักชวน และแนะนำในภาษาอังกฤษ

วิธีการพูดเสนอแนะ ชักชวน และแนะนำในภาษาอังกฤษ

  สวัสดีค่ะนักเรียน ม.1 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูวิธีการพูดให้ข้อเสนอแนะ ชักชวน และแนะนำกันค่ะซึ่งในการเสนอแนะ หรือชักชวนนั้น ผู้พูดจะแสดงความคิดเห็นเสนอแนะ เพื่อให้กระทำสิ่งใดสิ่งหนึ่งด้วยกัน มีการใช้ภาษาหลายระดับ และใช้รูปประโยคหลายชนิด เช่นเดียวกับการพูดในความหมายต่างๆ ที่ผ่านมาเราจึงต้องใช้รูปประโยคต่างๆ เช่นประโยคบอกเล่า คำสั่ง ชักชวน เพื่อให้ผู้ฟังทำตาม รวมถึงเทคนิคการตอบรับและปฏิเสธ ดังในตัวอย่างรูปแบบประโยคด้านล่างนะคะ   1. ประโยคบอกเล่า (Statement)  

โจทย์ปัญหาการวัด ม.2

ในบทความนี้เราจะได้เรียนรู้ตัวอย่างโจทย์การแปลงหน่วย และหาพื้นที่ของรูปเรขาคณิตต่างๆ พร้อมทั้งเรียนรู้การใช้สูตรที่เร็วขึ้น

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

รากที่ n ของจำนวนจริง รากที่ n ของจำนวนจริง คือจำนวนจริงตัวหนึ่งยกกำลัง n แล้วเท่ากับ x   เมื่อ n > 1 เราสามารถตรวจสอบรากที่ n ได้ง่ายๆ โดยนิยามดังนี้ นิยาม ให้  x, y เป็นจำนวนจริง และ n

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1