ความน่าจะเป็นของเหตุการณ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความน่าจะเป็นของเหตุการณ์

บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐

ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ

โดยที่  n(E)  แทน  จำนวนผลลัพธ์ทั้งหมดของเหตุการณ์ที่เราสนใจ

                       n(S)  แทน  จำนวนผลลัพธ์ทั้งหมดที่จะเกิดขึ้นได้

  P(E)  แทน ความน่าจะเป็นของเหตุการณ์

ดังนั้น   P(E)   =  \frac{n(E)}{n(S)}

ข้อควรจำ

  1. 0 ≤ P(E) ≤ 1
  2. ถ้า P(E) = 0  เหตุการณ์นั้นๆ จะไม่มีโอกาสเกิดขึ้นเลย
  3. ถ้า P(E) = 1  เหตุการณ์นั้นๆ เกิดขึ้นแน่นอน

ตัวอย่างที่ 1

ตัวอย่างที่ 1 จากการโยนลูกเต๋า 2 ลูก  1 ครั้ง  จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

2) เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

3) เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

วิธีทำ  หา S จากการทอดลูกเต๋า 2  ลูก 1 ครั้ง ได้ดังนี้

S  =  { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

            (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

                      (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

n(S)  =  36

1) เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

อธิบายเพิ่มเติม : ผลรวมของแต้มมากกว่าหรือเท่ากับ 11 หมายความว่า เมื่อนำแต้มของลูกเต๋า 2 ลูกมาบวกกัน แล้วได้ผลลัพธ์เท่ากับ 11 และมากกว่า 11

ให้ E1 แทน เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

E1           =    { (5, 6) , (6, 5 ) , ( 6, 6) }

n (E1)     =    3

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{3}{36} = \frac{1}{12}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11 เท่ากับ \frac{1}{12}

2) เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

อธิบายเพิ่มเติม : ผลรวมของแต้มเป็นจำนวนคู่ จะต้องเกิดจากแต้มคี่ทั้งสองลูกและแต้มคู่ทั้งสองลูก

ให้ E2 แทน เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

E2  =  { (1,1) , (1,3) , (1,5) , (2,2) , (2,4) , (2,6) , (3,1) , (3,3) , (3,5) , (4,2) , (4,4) , (4,6) ,

                         (5,1) ,(5,3) ,(5,5),(6,2) ,(6,4) ,(6,6) }

n(E2)   =  18

P(E2)   =  \frac{18}{36}  =  \frac{1}{2}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่ เท่ากับ \frac{1}{2}

3) เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

อธิบายเพิ่มเติม : ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก หมายความว่า ขึ้นแต้ม 1 หนึ่งลูกหรือสองลูกก็ได้

ให้ E3  แทน เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

E3           =   { (1,1) ,(1,2) ,((1,3) ,(1,4) ,(1,5) ,(1,6) ,(2,1) ,(3,1) ,(4,1) ,(5,1) ,(6,1) }

n(E3)      =   11

P(E3)      =  \frac{11}{36}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก เท่ากับ \frac{11}{36}

ตัวอย่างที่ 2

ตัวอย่างที่ 2    ครอบครัวครอบครัวหนึ่ง  มีบุตร 2 คน  จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

2) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

3) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน

4) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

วิธีทำ     ให้         ช  แทน บุตรชาย

       ญ  แทน บุตรหญิง

  S =  {(ช, ช), (ช, ญ), (ญ, ช), (ญ, ญ)}

   n(S) = 4

โดยที่  สมาชิกตัวแรกของคู่อันดับแสดงผลลัพธ์ที่อาจจะเกิดขึ้นได้ของการมีบุตรคนแรก และสมาชิกตัวที่สองของคู่อันดับแสดงผลลัพธ์ที่อาจจะเกิดขึ้นได้ของการมีบุตรคนที่สอง

1) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

ให้ E1 แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

E1 = {(ช, ญ)}

n (E1)     =    1

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{1}{4}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง เท่ากับ \frac{1}{4}

2) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

ให้ E2 แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

E2  =  { (ช, ญ) , (ญ, ช)) }

n(E2)   =  2

P(E2)   =  \frac{2}{4}  =  \frac{1}{2}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน เท่ากับ \frac{1}{2}

3) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน

เนื่องจากครอบครัวนี้มีบุตรเพียง 2 คนเท่านั้น เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน จึงเป็น 0

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน เท่ากับ 0

4) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

ให้ E3  แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

E3           =  {(ช, ช), (ช, ญ), (ญ, ช), (ญ, ญ)}

n(E3)      =   4

P(E3)      =  \frac{4}{4} = 1

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้  เท่ากับ  1

ตัวอย่างที่ 3

ตัวอย่างที่ 3    โยนเหรียญ 1 เหรียญ 3 ครั้ง จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

2) เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

3) เหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ

วิธีทำ  ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้จากการทดลองสุ่มนี้มี 8 แบบ ดังนี้

ความน่าจะเป็นของเหตุการณ์ 3

  S =  {HHH, HHT, HTH, HTT, THH, THT, TTH , TTT}

  n(S) = 8

1) เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

ให้ E1 แทน เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

E1 = {HHH, HHT, HTH , THH}

n (E1)     =    4

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{4}{8}\frac{1}{2}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย เท่ากับ \frac{1}{2}

2) เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

ให้ E2 แทน เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

E2  =  { HTT, TTH , TTT }

n(E2)   =  3

P(E2)   =  \frac{3}{8}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกก้อยติดต่อกัน เท่ากับ  \frac{3}{8}

3) เหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ

อธิบายเพิ่มเติม : เหรียญออกหัวอย่างน้อยหนึ่งเหรียญ  หมายความว่า เหรียญออกหัวหนึ่งเหรียญ สองเหรียญหรือสามเหรียญก็ได้

ให้ E3  แทน เหตุการณ์ที่ออกหัวอย่างน้อย 1 เหรียญ

E3           =  {HHH, HHT, HTH, HTT, THH, THT , TTH}

n(E3)      =   7

P(E3)      =  \frac{7}{8}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ เท่ากับ  \frac{7}{8}

ตัวอย่างที่ 4

ตัวอย่างที่ 4  สุ่มหยิบลูกบอล 1 ลูก  จากกล่องที่มีลูกบอลสีขาว 5 ลูก จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่หยิบได้ลูกบอลสีขาว

2) เหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน

วิธีทำ     กำหนดให้  ข₁, ข₂, ข₃, ข₄  และ ข₅  แทนลูกบอลสีขาวทั้ง 5 ลูก

ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้จากการทดลองสุ่มมี 5 แบบ คือ ข₁, ข₂, ข₃, ข₄  หรือ ข₅ 

นั่นคือ จำนวนผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้ เท่ากับ 5  หรือ  n(S) = 5

1) เหตุการณ์ที่หยิบได้ลูกบอลสีขาว

เหตุการณ์ที่หยิบได้ลูกบอลสีขาว มีผลลัพธ์ คือ ข₁, ข₂, ข₃, ข₄  หรือ ข₅ 

จะได้  จำนวนผลลัพธ์ของเหตุการณ์เป็น 5   หรือ  n(E) = 5

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่หยิบได้ลูกบอลสีขาว เท่ากับ  \frac{5}{5} = 1  หรือ P(E) = 1

2) เหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน

เนื่องจากไม่มีลูกบอลสีน้ำเงินอยู่ภายในกล่อง

จะได้  จำนวนผลลัพธ์ที่หยิบได้ลูกบอลสีน้ำเงิน เป็น 0

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน เท่ากับ 0

จาก ตัวอย่างที่ 4 จะสังเกตเห็นว่าเหตุการณ์ที่หยิบได้ลูกบอลสีขาวเป็น เหตุการณ์ที่เกิดขึ้นแน่นอน มีความน่าจะเป็นของเหตุการณ์ เท่ากับ 1 และเหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงินเป็น เหตุการณ์ที่ไม่เกิดขึ้นแน่นอน มีความน่าจะเป็น เท่ากับ 0

วิดีโอ ความน่าจะเป็นของเหตุการณ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

M6 Phrasal Verbs

Phrasal Verbs 

สวัสดีค่ะนักเรียนชั้นม.6 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “Phrasal Verbs“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด   ความหมาย Phrasal Verbs  Phrasal Verbs คือ คำกริยา โดยเป็นกริยาที่มีคำอื่นๆ อย่างเช่น คำบุพบท (Preposition) ร่วมกันส่วนใหญ่แล้ว Phrasal Verbs จะบอกถึงการกระทำ มักจะเจอในชีวิตประจำวันในสถานการณ์ทั่วไป ไม่เป็นทางการมาก ข้อดีคือจะทำให้ภาษาใกล้เคียงกับเจ้าของภาษามากขึ้นนั่นเองจ้า

Vtodo+Present Simple Tense

การใช้ V. to do ในรูปแบบของ Present Simple Tense

สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ V. to do ในรูปแบบของ Present Simple Tense หากพร้อมแล้วก็ไปลุยกันโลดเด้อ Let’s go! V. to do คืออะไร   ปรกติแล้วคำว่า do นั้นแปลว่าทำ แต่เมื่ออยู่ในประโยคแล้ว V. to do

การบรรยายตนเอง + Present Simple

สวัสดีนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับตัวเราในภาษาอังกฤษกันค่ะ ได้แก่ “ การบรรยายตนเอง + Present Simple “ พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันเลย   ทบทวน Present Simple Tense     ความหมาย: Present แปลว่า ปัจจุบัน ดังนั้น Present

ลบไม่ได้ช่วยให้ลืม เช่นเดียวกับการลบเศษส่วนและจำนวนคละ!

บทความที่แล้วเราได้กล่าวถึงการบวกเศษส่วนและจำนวนคละไปแล้ว บทต่อมาก็จะเป็นเรื่องของการลบเศษส่วนและจำนวนคละ ทั้งสองเรื่องนี้มีหลักการคล้ายกันต่างกันที่เครื่องหมายที่บ่งบอกว่าโจทย์ต้องการทราบอะไร ดังนั้นบทความนี้จะอธิบายถึงหลักการลบเศษส่วนและจำนวนคละอย่างละเอียดและยกตัวอย่างให้น้อง ๆเข้าใจอย่างเห็นภาพและสามารถนำไปปรับใช้กับแบบฝึกหัดเรื่องการลบเศษส่วนและจำนวนคละได้

เรียนรู้ตัวบทเด่นของบทละครพูดคำฉันท์เรื่องดัง มัทนะพาธา

มัทนะพาธา เป็นบทละครพูดคำฉันท์ที่ประพันธ์โดยรัชกาลที่ 6 ซึ่งพระองค์ทรงคิดขึ้นเองไม่ได้แปลหรือดัดแปลงมาจากเรื่องใด จากการศึกษาความเป็นมาในบทเรียนคราวที่แล้วทำให้เราได้รู้ที่มา ลักษณะคำประพันธ์รวมไปถึงเรื่องย่อของเรื่องกันไปแล้ว บทเรียนในวันนี้เราจะศึกษาตัวบทเด่น ๆ ของเรื่องกันนะคะว่ามีบทใดที่ได้ชื่อว่าเป็นวรรคทอง ถอดความ พร้อมทั้งเรียนรู้คุณค่าของานประพันธ์ชิ้นนี้อีกด้วย ถ้าน้อง ๆ อยากรู้แล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ตัวบทเด่น ๆ ใน มัทนะพาธา     ถอดความ บทนี้เป็นคำพูดของฤษีกาละทรรศินที่กำลังอธิบายให้ศุภางค์ แม่ทัพของท้าวชัยเสนว่าเหตุใดพระฤษีจึงเห็นว่าการห้ามปรามความรักระหว่างพระชัยเสนกับมัทนาเป็นสิ่งไร้ประโยชน์ โดยบอกว่า

ศึกษาที่มาของ ขัตติยพันธกรณี บทประพันธ์ที่มาจากเรื่องจริงในอดีต

ขัตติยพันธกรณี เป็นพระราชนิพนธ์ในรัชกาลที่ 5 มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ น้อง ๆ สงสัยกันไหมคะว่าเกี่ยวกับเรื่องไหน เหตุใดพระองค์จึงต้องพระราชนิพนธ์วรรณคดีเรื่องนี้ขึ้นมา เราไปหาคำตอบถึงที่มา ความสำคัญ และเนื้อเรื่องกันเลยค่ะ รับรองว่านอกจากจะได้ความรู้เกี่ยวกับบทประพันธ์แล้ว บทเรียนในวันนี้ยังมีเกร็ดความรู้ทางประวัติศาสตร์ให้น้อง ๆ อีกด้วยค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ที่มาของ ขัตติยพันธกรณี     ขัตติยพันธกรณีมีความหมายถึงเหตุอันเป็นข้อผูกพันของกษัตริย์ เป็นพระราชหัตถเลขาของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวและตอบกลับโดยสมเด็จกรมพระยาดำรงราชานุภาพ มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ ช่วง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1