การแก้อสมการเชิงเส้นตัวแปรเดียว

การแก้อสมการเชิงเส้นตัวแปรเดียว

สารบัญ

บทความนี้จะเป็นการสอนวิธี การแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งสามารถทำได้โดยการจัดรูปของตัวแปรให้อยู่ด้านเดียวกันและตัวเลขอยู่อีกด้าน เพื่อหาค่าของตัวแปรนั้นๆ แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อสมการนั้น น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐

หลักการแก้อสมการเชิงเส้นตัวแปรเดียว

ในการแก้อสมการเชิงเส้นตัวแปรเดียว จะทำคล้ายๆกับการแก้สมการ โดยมีหลักการ ดังนี้

  1. จัดตัวแปรให้อยู่ข้างเดียวกัน และจัดตัวเลขไว้อีกฝั่ง (นิยมจัดตัวแปรไว้ด้านซ้ายของสัญลักษณ์อสมการ และจัดตัวเลขไว้ด้านขวาของสัญลักษณ์อสมการ)
  2. ถ้านำจำนวนลบ มาคูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม ดังนี้
    • มากกว่า (>) เปลี่ยนเป็น น้อยกว่า (<)
    • น้อยกว่า (<) เปลี่ยนเป็น มากกว่า (>)
    • มากกว่าหรือเท่ากับ (≥) เปลี่ยนเป็น น้อยกว่าหรือเท่ากับ (≤)
    • น้อยกว่าหรือเท่ากับ (≤) เปลี่ยนเป็น มากกว่าหรือเท่ากับ (≥)
    • ไม่ท่ากับ (≠) สัญลักษณ์ไม่เปลี่ยน

จากหลักการแก้อสมการเชิงเส้นตัวแปรเดียว ที่ระบุว่า เมื่อนำจำนวนลบมา คูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้ามนั้น น้องๆมาสังเกตดูว่า ถ้านำจำนวนบวกมา คูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนมั้ย??

จงเติมคำตอบว่าอสมการเป็นจริงหรือเท็จ เมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงบวก

ข้อ อสมการ อสมการเป็นจริง

หรือเท็จ

ผลคูณ

อสมการเป็นจริง

หรือเท็จ

1

3 < 8

เป็นจริง

3 x 4 < 8 x 4

12 < 32

เป็นจริง
2 –4 ≤ –2

เป็นจริง

(–4) x 4  ≤ (–2) x 4

–16  ≤  –8

เป็นจริง

 

3

–5 < 1 เป็นจริง (–5) x 3 < 1 x 3

–15 < 3

เป็นจริง

 

4

4  ≥  3

เป็นจริง

4 x 5  ≥   3 x 5

20  ≥   15

เป็นจริง

5 3 > –1 เป็นจริง 3 x 12 > (–1) x 12

36 > –12

เป็นจริง

จะเห็นว่าเมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงบวก อสมการเป็นจริงทุกอสมการ นั่นคือ เมื่อคูณ หรือ หาร ทั้งสองข้างของอสมการด้วยจำนวนจริงบวก สัญลักษณ์ของอสมการจะไม่เปลี่ยน

ถ้าคูณทั้งสองข้างของอสมการด้วยจำนวนจริงลบ สัญลักษณ์ของอสมการจะเปลี่ยนหรือไม่

ข้อ

อสมการ อสมการเป็นจริง

หรือเท็จ

ผลคูณ อสมการเป็นจริง

หรือเท็จ

  6

3 < 5 เป็นจริง 3 x (–4) < 5 x (–4)

–12 < –20

เท็จ
  7 –4  ≤ –3

เป็นจริง

–4 x (–4)  ≤  –3 x (–4)

16  ≤  12

เท็จ

  8

–5 < 2 เป็นจริง –5 x (–3) < 2 x (–3)

15 < –6

เท็จ
  9 4  ≥  1 เป็นจริง 4 x (–5)  ≥  1 x (–5)

–20  ≥  –5

เท็จ

10 3 > –1 เป็นจริง 3 x (–12)  > –1 x (–12)

 –36 > 12

เท็จ

จะเห็นว่าเมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงลบ อสมการเป็นเท็จทุกอสมการ นั่นคือ เมื่อคูณ หรือ หาร ทั้งสองข้างของอสมการด้วยจำนวนจริงลบ สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม เพื่อทำให้อสมการเป็นจริง ซึ่งเป็นจริงตามหลักการข้อที่ 2

วิธีแก้อสมการเชิงเส้นตัวแปรเดียว

ลำดับต่อไป มาเรียนรู้วิธีการแก้อสมการเชิงเส้นตัวแปรเดียว จากตัวอย่างต่อไปนี้

ตัวอย่างที่ 1  จงหาคำตอบของอสมการ  3x – 2 < 10

จาก   3x – 2 < 10

นำ 2 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   3x – 2 + 2 < 10 + 2

                      3x < 12

                 3x(¹⁄₃ ) < 12(¹⁄₃ )

                             x < 4

ดังนั้น คำตอบของอสมการ 3x – 2 < 10 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 4

ตัวอย่างที่ 2  จงหาคำตอบของสมการ   –4x + 10  ≤  30

วิธีทำ  จาก  –4x + 10  ≤  30

นำ –10 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   –4x + 10  + (–10)  ≤  30 + (–10)

                                       –4x  ≤  20

                              –4x(–¹⁄₄ )  ≥  20(–¹⁄₄)

                                         x   ≥  –5

ดังนั้น คำตอบของอสมการ –4x + 10  ≤  30 คือ จำนวนจริงทุกจำนวนที่มากกว่าหรือเท่ากับ –5

ตัวอย่างที่ 3  จงหาคำตอบของสมการ  2(x – 10) < 4

วิธีทำ  จาก 2(x – 10) < 4

นำ 2 คูณเข้าไปในวงเล็บ

 จะได้   2x – 20  < 4

           2x < 4 + 20 

                           2x < 24 

นำ ¹⁄ ₂ คูณทั้งสองข้างของอสมการ

                 2x (¹⁄ ₂ )  < 24 (¹⁄ ₂)

                            x  <  12

ดังนั้น คำตอบของอสมการ 2(x – 10) < 4 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 12

ตัวอย่างที่ 4  จงหาคำตอบของสมการ  28 – 4x > 20

วิธีทำ  จาก   28 – 4x > 20

นำ –28 บวกเข้าทั้งสองข้างของอสมการ

 จะได้  28 – 4x – 28 > 20 – 28

                                –4x > –8

นำ –¹⁄₄   คูณทั้งสองข้างของอสมการ

                              –4x (–¹⁄₄ )  < -8 (–¹⁄₄)

                                           x  <  2

ดังนั้น คำตอบของอสมการ 28 – 4x > 20 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 2

ตัวอย่างที่ 5  จงหาคำตอบของสมการ  x – 5  ≥  2x – 7

วิธีทำ  จาก  x – 5  ≥  2x – 7

นำ 7 บวกเข้าทั้งสองข้างของอสมการ

 จะได้ x – 5 + 7  ≥  2x – 7 + 7

                                    x + 2  ≥  2x

นำ x ลบทั้งสองข้างของอสมการ

                            x + 2 – x  ≥  2x – x

                                       2  ≥ x  หรือ  x  ≤  2  

ดังนั้น คำตอบของอสมการ x – 5  ≥  2x – 7 คือ จำนวนจริงทุกจำนวนที่น้อยกว่าหรือเท่ากับ 2

ตัวอย่างที่ 6  จงหาคำตอบของสมการ 3(x – 7) ≠ 12

วิธีทำ  จาก  3(x – 7) ≠ 12

จะได้    3x – 21 12

นำ 21 บวกทั้งสองข้างของสมการ

 จะได้ 3x – 21 + 21 ≠ 12 + 21

                                3x ≠ 33

                                  x 11

ดังนั้น คำตอบของอสมการ 3(x –7) 12 คือ จำนวนจริงทุกจำนวนยกเว้น 11

ตัวอย่างที่ 7  จงหาคำตอบของสมการ x – 12 ≠ 2x – 4

วิธีทำ  จาก x – 12 ≠ 2x – 4

นำ 4 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   x – 12 + 4 ≠ 2x – 4 + 4

                          x – 8  ≠  2x

นำ x ลบทั้งสองข้างของอสมการ

                    x – 8 – x  ≠ 2x – x

                               x  ≠   -8

ดังนั้น คำตอบของอสมการ x – 12 ≠ 2x – 4 คือ จำนวนจริงทุกจำนวนยกเว้น -8

แบบฝึกหัด พร้อมเฉลย

จงแสดงวิธีแก้อสมการต่อไปนี้

1) 5x – 10 ≠ 30
วิธีทำ  จาก  5x – 10 ≠ 30
5x – 10 + 10 ≠ 30 + 10
5x ≠ 40
5x (¹⁄ ₅ ) ≠ 40 (¹⁄ ₅ )
x ≠ 8
2) 2x – 17 -11
วิธีทำ  จาก  2x – 17  -11
2x – 17 + 17
 -11+17
2x
 6
                          x  3
3) 3x + 15 < 30
วิธีทำ  จาก  3x + 15 < 30
3x + 15 – 15 <
 30 – 15
3x <
 15
                          x < 5
4) 10x + 5 ≥ 25
วิธีทำ  จาก  10x +5 ≥ 25
10x + 5 – 5 ≥
 25 – 5
10x ≥
 20
                        x ≥ 2
5) 4x + 10 > 50
วิธีทำ  จาก  4x + 10 > 50
4x + 10 – 10 >
 50 – 10
4x >
 40
                          x > 10
6) 7x – 3 ≠ 4
วิธีทำ  จาก  7x – 3 ≠ 4
7x – 3 + 3 ≠ 4 + 3
7x ≠ 7
x ≠ 1
7) 3(x + 1) ≥ 15
วิธีทำ  จาก 3(x + 1) ≥ 15
                   x + 1 ≥ 5
              x + 1 – 1 ≥ 5 – 1
                        x ≥ 4
8) 2(x – 4) < 12
วิธีทำ  จาก  2(x – 4) < 12
                     x – 4 < 6
               x – 4 + 4 < 6 + 4
                          x < 10

เมื่อน้องๆเรียนรู้เรื่องการเแก้อสมการเชิงเส้นตัวแปรเดียว  จะทำให้น้องๆสามารถแก้อสมการได้อย่างถูกต้องและแม่นยำ สามารถนำความรู้ที่ได้จากการเรียนเรื่องสมการมาประยุกต์ใช้กับอสมการได้ เมื่อน้องๆ หาคำตอบได้แล้ว น้องๆจะต้องเขียนกราฟของคำตอบของสมการ ซึ่งเขียนในรูปของเส้นจำนวน อยู่ในบทความเรื่องกราฟของอสมการเชิงเส้นตัวแปรเดียว

วิดีโอ การแก้อสมการเชิงเส้นตัวแปรเดียว

        คลิปวิดีโอนี้ได้รวบรวม วิธีการแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค ที่จะทำให้น้องๆมองวิชาคณิตศาสตร์เป็นเรื่องง่าย

 

0
NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook

การถามทางในภาษาอังกฤษ Asking for Direction in English

สวัสดีค่ะนักเรียนป.6 ที่น่ารักทุกคน เคยมั้ยที่เราเจอฝรั่งถามทางแล้วตอบไม่ได้ ทำได้แค่ชี้ๆ แล้วก็บ๊ายบาย หากทุกคนเคยเจอปัญหานี้ ต้องท่องศัพท์และรู้โครงสร้างประโยคที่สำคัญในการถามทางแล้วล่ะ ไปลุยกันเลย   การถามทางในภาษาอังกฤษ Asking for Direction in English   การถามทิศทางจะต้องมีประโยคเกริ่นก่อนเพื่อให้คนที่เราถาม ตั้งตัวได้ว่า กำลังจะโดนถามอะไร ยังไง ซึ่งเราสามารถถามได้ทั้ง คำถามแบบสุภาพเมื่อพูดกับคนที่เราไม่คุ้นเคย หรือ คำถามทั่วไปเมื่อพูดกับคนใกล้ตัว  

การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่ใช้ในการเรียน

การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่ใช้ในการเรียน + การใช้ Can/ Could/ Should

สวัสดีค่ะนักเรียนชั้นม. 1 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่เจอบ่อยและการใช้ Can, Could, Should กันนะคะ ไปลุยกันเลย   มารู้จักกับประโยคคำสั่ง (Imperative sentence)     รูปแบบและโครงสร้างประโยคคำสั่ง Imperative sentence Imperative sentence ในรูปแบบประโยคบอกเล่าจะ

อัตราส่วนของจำนวนหลายๆ จำนวน

อัตราส่วนของจำนวนหลายๆ จำนวน

ในบทความนี้เราจะได้เรียนรู้หลักการเขียนอัตราส่วนแทนการเปรียบเทียบปริมาณของสิ่งต่างๆที่มากกว่า 2 สิ่งขึ้นไปได้ โดยใช้ความรู้เกี่ยวกับอัตราส่วนของจํานวนหลายๆจํานวนในการแก้ปัญหาหรือสถานการณ์ต่าง ๆได้

การดำเนินการของเซต

การดำเนินการของเซตประกอบไปด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต และผลต่าง เรื่องนี้เป็นอีกหนึ่งเรื่องที่เราจะได้ใช้ในบทต่อๆไป เรื่องนี้จึงค่อนข้างมีประโยชน์ในเรื่องของการเรียนเนื้อหาบทต่อไปง่ายขึ้น

ใช้ภาษาพูดอย่างไรให้ถูกต้อง และเหมาะสม

บทนำ สวัสดีน้อง ๆ ทุกคน กลับมาพบกันอีกครั้งในบทเรียนวิชาภาษาไทย วันนี้จะเป็นการเรียนเรื่องระดับภาษา โดยจะมีการแบ่งเนื้อหาออกเป็นภาษาพูด และภาษาเขียน ซึ่งจะมีเนื้อหาเกี่ยวกับระดับของภาษาพูดที่เราควรจะเลือกใช้ให้ถูกต้องตามบุคคล โอกาส และสถานที่ด้วย เป็นอีกหนึ่งบทเรียนในระดับชั้นมัธยมต้นที่น่าสนใจ   ถ้าพร้อมแล้วเรามาเริ่มเรียนไปพร้อม ๆ กันเลย     ภาษาพูด คืออะไร   ภาษา เป็นตัวกลางในการสื่อความหมาย บนโลกนี้นอกจากจะมีหลากหลายภาษาแล้ว ในหนึ่งภาษานั้นก็ยังแบ่งการพูดออกเป็นหลายระดับให้เราได้เลือกใช้แตกต่างกันไป ภาษาพูด

พาราโบลา

พาราโบลา

พาราโบลา พาราโบลา คือเซตของจุดบนระนาบมีระยะห่างจากจุดโฟกัส (focus) เท่ากับระยะห่างจากเส้นไดเรกตริกซ์ (directrix) พาราโบลาที่มีจุดยอดอยู่ที่จุดกำเนิด กราฟของพาราโบลาจะมีลักษณะคล้ายระฆัง ตอนม.3 น้องๆเคยเห็นทั้งพาราโบลาหงายและคว่ำแล้ว แต่ในบทความนี้น้องๆจะได้รู้จักกับพาราโบลาตะแคงซ้ายและขวา สามารถเขียนเป็นตารางให้เข้าใจง่ายๆได้ดังนี้ ข้อสังเกต  จะเห็นว่าถ้าแกนสมมาตรคือแกน y รูปแบบสมการของพาราโบลา y จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ y เช่นเดียวกับแกนสมมาตรเป็นแกน x รูปแบบสมการของพาราโบลา x

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้