การแก้อสมการเชิงเส้นตัวแปรเดียว

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะเป็นการสอนวิธี การแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งสามารถทำได้โดยการจัดรูปของตัวแปรให้อยู่ด้านเดียวกันและตัวเลขอยู่อีกด้าน เพื่อหาค่าของตัวแปรนั้นๆ แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อสมการนั้น น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐

หลักการแก้อสมการเชิงเส้นตัวแปรเดียว

ในการแก้อสมการเชิงเส้นตัวแปรเดียว จะทำคล้ายๆกับการแก้สมการ โดยมีหลักการ ดังนี้

  1. จัดตัวแปรให้อยู่ข้างเดียวกัน และจัดตัวเลขไว้อีกฝั่ง (นิยมจัดตัวแปรไว้ด้านซ้ายของสัญลักษณ์อสมการ และจัดตัวเลขไว้ด้านขวาของสัญลักษณ์อสมการ)
  2. ถ้านำจำนวนลบ มาคูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม ดังนี้
    • มากกว่า (>) เปลี่ยนเป็น น้อยกว่า (<)
    • น้อยกว่า (<) เปลี่ยนเป็น มากกว่า (>)
    • มากกว่าหรือเท่ากับ (≥) เปลี่ยนเป็น น้อยกว่าหรือเท่ากับ (≤)
    • น้อยกว่าหรือเท่ากับ (≤) เปลี่ยนเป็น มากกว่าหรือเท่ากับ (≥)
    • ไม่ท่ากับ (≠) สัญลักษณ์ไม่เปลี่ยน

จากหลักการแก้อสมการเชิงเส้นตัวแปรเดียว ที่ระบุว่า เมื่อนำจำนวนลบมา คูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้ามนั้น น้องๆมาสังเกตดูว่า ถ้านำจำนวนบวกมา คูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนมั้ย??

จงเติมคำตอบว่าอสมการเป็นจริงหรือเท็จ เมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงบวก

ข้อ อสมการ อสมการเป็นจริง

หรือเท็จ

ผลคูณ

อสมการเป็นจริง

หรือเท็จ

1

3 < 8

เป็นจริง

3 x 4 < 8 x 4

12 < 32

เป็นจริง
2 –4 ≤ –2

เป็นจริง

(–4) x 4  ≤ (–2) x 4

–16  ≤  –8

เป็นจริง

 

3

–5 < 1 เป็นจริง (–5) x 3 < 1 x 3

–15 < 3

เป็นจริง

 

4

4  ≥  3

เป็นจริง

4 x 5  ≥   3 x 5

20  ≥   15

เป็นจริง

5 3 > –1 เป็นจริง 3 x 12 > (–1) x 12

36 > –12

เป็นจริง

จะเห็นว่าเมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงบวก อสมการเป็นจริงทุกอสมการ นั่นคือ เมื่อคูณ หรือ หาร ทั้งสองข้างของอสมการด้วยจำนวนจริงบวก สัญลักษณ์ของอสมการจะไม่เปลี่ยน

ถ้าคูณทั้งสองข้างของอสมการด้วยจำนวนจริงลบ สัญลักษณ์ของอสมการจะเปลี่ยนหรือไม่

ข้อ

อสมการ อสมการเป็นจริง

หรือเท็จ

ผลคูณ อสมการเป็นจริง

หรือเท็จ

  6

3 < 5 เป็นจริง 3 x (–4) < 5 x (–4)

–12 < –20

เท็จ
  7 –4  ≤ –3

เป็นจริง

–4 x (–4)  ≤  –3 x (–4)

16  ≤  12

เท็จ

  8

–5 < 2 เป็นจริง –5 x (–3) < 2 x (–3)

15 < –6

เท็จ
  9 4  ≥  1 เป็นจริง 4 x (–5)  ≥  1 x (–5)

–20  ≥  –5

เท็จ

10 3 > –1 เป็นจริง 3 x (–12)  > –1 x (–12)

 –36 > 12

เท็จ

จะเห็นว่าเมื่อคูณทั้งสองข้างของอสมการด้วยจำนวนจริงลบ อสมการเป็นเท็จทุกอสมการ นั่นคือ เมื่อคูณ หรือ หาร ทั้งสองข้างของอสมการด้วยจำนวนจริงลบ สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม เพื่อทำให้อสมการเป็นจริง ซึ่งเป็นจริงตามหลักการข้อที่ 2

วิธีแก้อสมการเชิงเส้นตัวแปรเดียว

ลำดับต่อไป มาเรียนรู้วิธีการแก้อสมการเชิงเส้นตัวแปรเดียว จากตัวอย่างต่อไปนี้

ตัวอย่างที่ 1  จงหาคำตอบของอสมการ  3x – 2 < 10

จาก   3x – 2 < 10

นำ 2 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   3x – 2 + 2 < 10 + 2

                      3x < 12

                 3x(¹⁄₃ ) < 12(¹⁄₃ )

                             x < 4

ดังนั้น คำตอบของอสมการ 3x – 2 < 10 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 4

ตัวอย่างที่ 2  จงหาคำตอบของสมการ   –4x + 10  ≤  30

วิธีทำ  จาก  –4x + 10  ≤  30

นำ –10 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   –4x + 10  + (–10)  ≤  30 + (–10)

                                       –4x  ≤  20

                              –4x(–¹⁄₄ )  ≥  20(–¹⁄₄)

                                         x   ≥  –5

ดังนั้น คำตอบของอสมการ –4x + 10  ≤  30 คือ จำนวนจริงทุกจำนวนที่มากกว่าหรือเท่ากับ –5

ตัวอย่างที่ 3  จงหาคำตอบของสมการ  2(x – 10) < 4

วิธีทำ  จาก 2(x – 10) < 4

นำ 2 คูณเข้าไปในวงเล็บ

 จะได้   2x – 20  < 4

           2x < 4 + 20 

                           2x < 24 

นำ ¹⁄ ₂ คูณทั้งสองข้างของอสมการ

                 2x (¹⁄ ₂ )  < 24 (¹⁄ ₂)

                            x  <  12

ดังนั้น คำตอบของอสมการ 2(x – 10) < 4 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 12

ตัวอย่างที่ 4  จงหาคำตอบของสมการ  28 – 4x > 20

วิธีทำ  จาก   28 – 4x > 20

นำ –28 บวกเข้าทั้งสองข้างของอสมการ

 จะได้  28 – 4x – 28 > 20 – 28

                                –4x > –8

นำ –¹⁄₄   คูณทั้งสองข้างของอสมการ

                              –4x (–¹⁄₄ )  < -8 (–¹⁄₄)

                                           x  <  2

ดังนั้น คำตอบของอสมการ 28 – 4x > 20 คือ จำนวนจริงทุกจำนวนที่น้อยกว่า 2

ตัวอย่างที่ 5  จงหาคำตอบของสมการ  x – 5  ≥  2x – 7

วิธีทำ  จาก  x – 5  ≥  2x – 7

นำ 7 บวกเข้าทั้งสองข้างของอสมการ

 จะได้ x – 5 + 7  ≥  2x – 7 + 7

                                    x + 2  ≥  2x

นำ x ลบทั้งสองข้างของอสมการ

                            x + 2 – x  ≥  2x – x

                                       2  ≥ x  หรือ  x  ≤  2  

ดังนั้น คำตอบของอสมการ x – 5  ≥  2x – 7 คือ จำนวนจริงทุกจำนวนที่น้อยกว่าหรือเท่ากับ 2

ตัวอย่างที่ 6  จงหาคำตอบของสมการ 3(x – 7) ≠ 12

วิธีทำ  จาก  3(x – 7) ≠ 12

จะได้    3x – 21 12

นำ 21 บวกทั้งสองข้างของสมการ

 จะได้ 3x – 21 + 21 ≠ 12 + 21

                                3x ≠ 33

                                  x 11

ดังนั้น คำตอบของอสมการ 3(x –7) 12 คือ จำนวนจริงทุกจำนวนยกเว้น 11

ตัวอย่างที่ 7  จงหาคำตอบของสมการ x – 12 ≠ 2x – 4

วิธีทำ  จาก x – 12 ≠ 2x – 4

นำ 4 บวกเข้าทั้งสองข้างของอสมการ

 จะได้   x – 12 + 4 ≠ 2x – 4 + 4

                          x – 8  ≠  2x

นำ x ลบทั้งสองข้างของอสมการ

                    x – 8 – x  ≠ 2x – x

                               x  ≠   -8

ดังนั้น คำตอบของอสมการ x – 12 ≠ 2x – 4 คือ จำนวนจริงทุกจำนวนยกเว้น -8

แบบฝึกหัด พร้อมเฉลย

จงแสดงวิธีแก้อสมการต่อไปนี้

1) 5x – 10 ≠ 30
วิธีทำ  จาก  5x – 10 ≠ 30
5x – 10 + 10 ≠ 30 + 10
5x ≠ 40
5x (¹⁄ ₅ ) ≠ 40 (¹⁄ ₅ )
x ≠ 8
2) 2x – 17 -11
วิธีทำ  จาก  2x – 17  -11
2x – 17 + 17
 -11+17
2x
 6
                          x  3
3) 3x + 15 < 30
วิธีทำ  จาก  3x + 15 < 30
3x + 15 – 15 <
 30 – 15
3x <
 15
                          x < 5
4) 10x + 5 ≥ 25
วิธีทำ  จาก  10x +5 ≥ 25
10x + 5 – 5 ≥
 25 – 5
10x ≥
 20
                        x ≥ 2
5) 4x + 10 > 50
วิธีทำ  จาก  4x + 10 > 50
4x + 10 – 10 >
 50 – 10
4x >
 40
                          x > 10
6) 7x – 3 ≠ 4
วิธีทำ  จาก  7x – 3 ≠ 4
7x – 3 + 3 ≠ 4 + 3
7x ≠ 7
x ≠ 1
7) 3(x + 1) ≥ 15
วิธีทำ  จาก 3(x + 1) ≥ 15
                   x + 1 ≥ 5
              x + 1 – 1 ≥ 5 – 1
                        x ≥ 4
8) 2(x – 4) < 12
วิธีทำ  จาก  2(x – 4) < 12
                     x – 4 < 6
               x – 4 + 4 < 6 + 4
                          x < 10

เมื่อน้องๆเรียนรู้เรื่องการเแก้อสมการเชิงเส้นตัวแปรเดียว  จะทำให้น้องๆสามารถแก้อสมการได้อย่างถูกต้องและแม่นยำ สามารถนำความรู้ที่ได้จากการเรียนเรื่องสมการมาประยุกต์ใช้กับอสมการได้ เมื่อน้องๆ หาคำตอบได้แล้ว น้องๆจะต้องเขียนกราฟของคำตอบของสมการ ซึ่งเขียนในรูปของเส้นจำนวน อยู่ในบทความเรื่องกราฟของอสมการเชิงเส้นตัวแปรเดียว

วิดีโอ การแก้อสมการเชิงเส้นตัวแปรเดียว

        คลิปวิดีโอนี้ได้รวบรวม วิธีการแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค ที่จะทำให้น้องๆมองวิชาคณิตศาสตร์เป็นเรื่องง่าย

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ There is และ There are ในประโยคคำถาม

สวัสดีค่ะนักเรียนชั้น ม.2 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “การใช้ There is There are ในประโยคคำถาม ” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ   There is/There are คืออะไร   There is และ There are แปลว่า

สมบัติของรูปสามเหลี่ยมมุมฉาก

สมบัติของรูปสามเหลี่ยมมุมฉาก

ในบทความนี้นักเรียนจะได้เรียนรู้สมบัติของรูปสามเหลี่ยมมุมฉากที่ทำให้เข้าใจง่ายและมีวิธีในการวิเคราะห์โจทย์ที่หลากหลาย

Profile Telling Time

“บอกเวลาในภาษาอังกฤษ (Time in English) ”

Hi guys! สวัสดีค่ะนักเรียนชั้น ป.5 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการ “บอกเวลาในภาษาอังกฤษ (Telling Time in English) ” กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลย  บทนำ ในบทเรียนนี้ครูขอยกตัวอย่างการบอกเวลาที่นิยมใช้กันโดยทั่วไปใน 2 รูปแบบ ตามที่มาของ Native English หรือ ภาษาอังกฤษของเจ้าของภาษา นะคะ  ดังตัวอย่างดังต่อไปนี้

มัทนะพาธา

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา ที่มาและเรื่องย่อ

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา เป็นวรรณคดีที่ทรงคุณค่าทางวรรณศิลป์ได้รับการยกย่องว่าแต่งดีและมีความแปลกใหม่อีกเรื่องหนึ่ง น้อง ๆ หลายคนอาจจะเคยคุ้นหูกันมาบ้างตามสื่อต่าง ๆ เพราะวรรณคดีเรื่องนี้เป็นหนึ่งในเรื่องที่โด่งดังจึงมักถูกหยิบไปทำเป็นละครทางโทรทัศน์บ่อย ๆ แต่จะมีความเป็นมาอย่างไรนั้น วันนี้เราจะไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ประวัติความเป็นมาของบทละครพูดคำฉันท์เรื่อง มัทนะพาธา     มัทนะพาธาเป็นบทละครพูดคำฉันท์ พระราชนิพนธ์ในพระบาทสมเด็จเพราะมงกุฎเกล้าเจ้าอยู่หัว รัชกาลที่ 6 ทรงมีพระราชกุศลเพื่อสร้าง ตำนานแห่งดอกกุหลาบ จึงทรงผูกเรื่องขึ้นมาใหม่หมด ทรงให้ความสำคัญเรื่องความถูกต้อง และความสมจริงในรายละเอียดของเรื่อง

เมื่อฉันโดนงูรัด!: เรียนรู้การใช้ Passive Voice แบบผ่อน ‘คลายย’

น้องๆ ทราบกันมั้ยว่าในไวยากรณ์ภาษาอังกฤษจะมีสิ่งที่เรียกว่า ‘Voice’ ถ้ายังไม่ทราบหรือเคยได้ยินแต่ยังไม่แน่ใจว่าคืออะไรวันนี้เราจะมาเรียนรู้เรื่อง Voice ในภาษาอังกฤษแบบเข้าใจง่ายๆ กันครับ

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1