การแก้ระบบสมการเชิงเส้นสองตัวแปร

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้ระบบสมการเชิงเส้นสองตัวแปร

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร  โดยการเลือกกำจัดตัวแปรใดตัวแปรหนึ่ง(x) เมื่อเลือกกำจัด x จะได้ค่า y แล้วนำค่าของตัวแปร(y) มาแทนค่าในสมการเพื่อหาค่าของตัวแปรอีกหนึ่งตัวแปร (x) ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ⇐⇐

ให้ a, b, c, d, e และ f เป็นจำนวนจริงใดๆ ที่ a,b ไม่เป็นศูนย์บร้อมกัน และ c,d ไม่เป็นศูนย์บร้อมกัน เรียกระบบที่ประกอบด้วยสมการ

ax +by =c

cx + dy = f

ว่า ระบบสมการเชิงเส้นสองตัวแปร ซึ่งคำตอบของระบบสมการเชิงเส้นสองตัวแปร คือ คู่อันดับ (x,y) ที่ค่า x และ ค่า y ทำให้สมการทั้งสองของระบบสมการเป็นจริง

ตัวอย่างที่ 1 

ตัวอย่างที่ 1  จงแก้ระบบสมการ

x + y = 50

2x + 4y = 140

วิธีทำ   x + y = 50             ———(1)

  2x + 4y = 140      ———(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร x โดยการทำสัมประสิทธิ์ของตัวแปร x ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร x ในสมการ(1) เท่ากับ 1 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ 2 ดังนั้น นำสมการ (1) × 2 เพื่อให้สัมประสิทธิ์ของตัวแปร x เท่ากับ 2

(1) × 2 ;     2x + 2y = 100      ———(3)

เมื่อสัมประสิทธิ์ของตัวแปร x เท่ากันแล้ว กำจัดตัวแปร x เพื่อหาค่า y โดยการนำ สมการ (2) – (3)

(2) – (3) ;  (2x + 4y) – (2x + 2y) = 140 – 100

      2x + 4y – 2x – 2y = 40

          2y = 40

                                           y = 40 ÷ 2

  y = 20

หาค่า x โดยแทน y ด้วย 20 ในสมการที่ (1) จะได้

        x + y = 50

                                   x + 20 = 50

                                           x  = 50 – 20    

 x  = 30

ตรวจสอบ     แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (1) จะได้

x + y = 30 + 20 = 50  เป็นจริง

แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (2) จะได้

2x + 4y = 2(30) + 4(20) =  60 + 80 = 140  เป็นจริง

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

นอกจากวิธีการดังกล่าวแล้ว ยังสามารถใช้วิธีการแทนค่า ได้ดังนี้

วิธีทำ     x + y = 50            ———(1)

2x + 4y = 140          ———(2)

จากสมการ (1) ให้จัดรูปใหม่ โดยให้ตัวแปร x อยู่ทางซ้ายของเครื่องหมายเท่ากับ เพียงตัวเดียว

จาก (1);    x = 50 –  y     ———(3)

แทน x ด้วย 50 – y ใน (2) จะได้

2x + 4y = 140

        2(50 – y) + 4y = 140

                              100 – 2y + 4y = 140

        2y = 140 – 100

        2y = 40

          y = 40 ÷ 2

          y = 20

แทน y ด้วย 20 ใน (3) จะได้

x = 50 –  y

                                        x = 50 – 20

                                        x = 30

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

ตัวอย่างที่ 2

ตัวอย่างที่ 2  จงแก้ระบบสมการ

3x + 4y = 27   ——-(1)

2x – 3y = 1     ——-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 4 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 4 และ 3 คือ 4 × 3 = 12 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 12

(1) × 3;      9x + 12y = 81   ——-(3)

(2) × 4;      8x – 12y = 4     ——-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 12 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -12 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)

(3) + (4);    (9x + 12y) + (8x – 12y) = 81 + 4

    17x = 85

                                                           x = 85 ÷ 17

       x = 5

หาค่า y โดยแทนค่า x = 5 ในสมการที่ (1) จะได้

    3x + 4y = 27

                     3(5) + 4y = 27

  4y = 27 – 15

  4y = 12

    y = 4 ÷ 3

    y = 3

ตรวจสอบ     แทนค่า x = 5  และ y = 3 ในสมการ (1) จะได้

3(5) + 4(3) = 15 + 12 = 27   เป็นจริง

แทนค่า x = 5  และ y = 3 ในสมการ (2) จะได้

2(5) – 3(3) = 10 – 9 = 1   เป็นจริง

ดังนั้น คำตอบของระบบสมการ คือ (5,3)

ตัวอย่างที่ 3

ตัวอย่างที่ 3  จงแก้ระบบสมการ

3x + 2y = 16
2x – 3y = 2

วิธีทำ

3x + 2y = 16 ———-(1)
2x – 3y = 2 ———-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 2 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 2 และ 3 คือ 2 × 3 = 6 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 6
(1)×3;   9x + 6y = 48 ———-(3)
(2)×2;   4x – 6y = 4 ———-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 6 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -6 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)
(3) + (4);  (9x + 6y) + (4x – 6y) = 48 + 4

13x = 52

    x = 52 ÷ 13

                         x = 4

หาค่า y โดยแทน x ด้วย 4 ในสมการ (1) จะได้

  3x + 2y = 16

3(4) + 2y = 16

   12 + 2y = 16

            2y = 16 – 12

            2y = 4

            y = 2

ตรวจสอบ แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (1) จะได้
3(4) + 2(2) = 12 + 4 = 16 เป็นจริง
แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (2) จะได้
2(4) – 3(2) = 8 – 6 = 2 เป็นจริง
ดังนั้น คำตอบของระบบสมการ คือ (4,2)

คลิปวิดีโอ การแก้ระบบสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ไตรภูมิพระร่วง เรียนรู้วรรณคดีเก่าแก่จากสมัยสุโขทัย

ไตรภูมิพระร่วง เป็นวรรณคดีเก่าแก่ที่แต่งขึ้นตั้งแต่สมัยสุโขทัย น้อง ๆ สงสัยไหมคะว่าทำไมวรรณคดีที่เก่าแก่ขนาดนี้ถึงยังมีให้เห็น ให้เราได้เรียนกันมาจนถึงปัจจุบัน บทเรียนในวันนี้จะพาน้อง ๆ ทุกคนไปไขข้องใจทั้งประวัติความเป็นมา ลักษณะคำประพันธ์ รวมไปถึงเรื่องย่อในตอน มนุสสภูมิ กันด้วย ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของเรื่อง   ไตรภูมิพระร่วง เดิมเรียกว่า เตภูมิกถา หรือ ไตรภูมิกถา แต่สมเด็จพระยาดำรงราชานุภาพ ทรงเปลี่ยนชื่อให้เพื่อเป็นเกียรติแก่พญาลิไท กษัตริย์ในราชวงศ์พระร่วงผู้พระราชนิพนธ์เรื่องนี้เมื่อปี

ตัวประกอบของจำนวนนับ

ตัวประกอบของจำนวนนับ ป.6

บทความนี้จะให้ความรู้เกี่ยวกับตัวประกอบของจำนวนนับ น้องๆชั้นป.6 จะได้เรียนรู้เกี่ยวกับความหมายของตัวประกอบ รวมไปถึงวิธีหาตัวประกอบของจำนวนนับนั่นเอง

รอบรู้เรื่องคำไทย คำศัพท์คำไหนภาษาไทยยืมมาจากต่างประเทศ

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคน กลับมาพบกับบทเรียนภาษาไทยสนุก ๆ พร้อมสาระความรู้ดี ๆ ซึ่งวันก็เช่นเคยเราจะมาเข้าสู่เนื้อหาการเรียนรู้เกี่ยวกับเรื่องคำภาษาต่างประเทศที่ใช้ในภาษาไทย ซึ่งเป็นเรื่องที่สำคัญมาก ๆ เพราะภาษาไทยที่เราใช้กันในปัจจุบันก็มีที่มาจากการยืมคำจากภาษาต่างประเทศมา และไม่ได้มีการยืมแค่ในภาษาบาลีหรือสันสกฤษเท่านั้น แต่ยัลมีภาษาอื่น ๆ อีก เพราะฉะนั้นวันนี้เราจะพาน้อง ๆ ทุกคนมาทำความรู้จักกับคำจากภาษาต่างประเทศที่เราใช่ในภาษาไทยกันให้ลึกขึ้นอีกระดับหนึ่ง ถ้าพร้อมแล้วก็ไปเริ่มเรียนกันได้เลย     สาเหตุการยืมของภาษาไทย มาเริ่มกันที่จุดเริ่มต้น หรือสาเหตุที่ทำไมคนไทยจึงต้องหยิบยืมคำจากภาษาต่างประเทศมาใช้

Imperative for Advice

Imperative for Advice: การให้คำแนะนำ

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนเรื่องง่ายๆ อย่าง Imperative for Advice กัน จะง่ายขนาดไหนเราลองไปดูกันเลยครับ

Suggesting Profile

การใช้ประโยคคำสั่ง คำขอร้อง และคำแนะนำง่ายๆ

  สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ การใช้ประโยคคำสั่ง คำขอร้อง และคำแนะนำง่ายๆ “Easy Imperative Sentences” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันเลย รูปแบบและโครงสร้างประโยคคำสั่ง Imperative sentence     Imperative sentence ในรูปแบบประโยคบอกเล่าจะ ใช้ Verb base form (V.1)

Let Me Introduce Myself: พูดเกี่ยวกับตัวเองแบบง่าย

พี่เชื่อว่าพอเปิดเทอมทีไรสิ่งที่เราต้องทำนั่นก็คือ การแนะนำตัวเอง ไม่ว่าจะเป็นทั้งในวิชาภาษาอังกฤษ หรือวิชาอื่นๆ นอกจากการแนะนำตัวเองแล้ว น้องๆ อาจจะต้องพูดบรรยายเกี่ยวกับตัวเองอีกด้วย วันนี้เราจะมาดูกันว่าเราจะสามารถพูดและบรรยายเกี่ยวกับตนเองให้น่าสนใจได้อย่างไรบ้าง

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1