กราฟของสมการเชิงเส้นสองตัวแปร

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟ
tucksaga
tucksaga
Share on twitter
Share on facebook

สารบัญ

กราฟของสมการเชิงเส้นสองตัวแปร คือกราฟแสดงความสัมพันธ์ระหว่างปริมาณสองชุดที่มีความสัมพันธ์เชิงเส้นสองตัวแปรหรือกราฟเส้นตรง ซึ่งจะพบเห็นในชีวิตประจำวันทั้งในด้านวิทยาศาสตร์และสังคมศาสตร์ 

ความหมายของกราฟสมการเชิงเส้นสองตัวแปร

ความสัมพันธ์ระหว่างปริมาณสองชุดที่มีกราฟอยู่ในแนวเส้นตรงเดียวกันเป็นความสัมพันธ์เชิงเส้น พิจารณาความสัมพันธ์ต่อไปนี้

“สามเท่าของจำนวนเต็มจำนวนหนึ่งมากกว่าจำนวนเต็มอีกจำนวนหนึ่งอยู่ 10″

             ถ้าให้ x แทนจำนวนเต็มจำนวนแรก

                      y แทนจำนวนเต็มจำนวนที่สอง

เขียนข้อความข้างต้นเป็นสมการได้เป็น  3x – y  =  10

เมื่อกำหนดค่า x และหาค่า y ที่เป็นไปได้ตามเงื่อนไขของข้อความข้างต้น จะได้ ดังตารางต่อไปนี้

ตารางสองตัวแปรจากตาราง คู่อันดับที่แสดงความสัมพันธ์ระหว่างจำนวนเต็มจำนวนแรกและจำนวนเต็มจำนวนที่สอง คือ  (-10, -40), (-5, -25), (0, -10), (5, 5) และ (10, 20) นำคู่อันดับที่ได้มาเขียนกราฟได้ดังนี้

กราฟสองตัวแปร

 จากตัวอย่างข้างต้น จะเห็นว่า กราฟที่ได้เป็นจุดที่เรียงอยู่ในแนวเส้นตรงเดียวกันความสัมพันธ์ของจำนวนเต็มทั้งสองจึงเป็นความสัมพันธ์เชิงเส้น

สมการของความสัมพันธ์เชิงเส้นที่แสดงความเกี่ยวข้องระหว่างปริมาณสองชุดจะเรียกว่า “สมการเชิงเส้นสองตัวแปร”

นิยาม

 

ลักษณะสำคัญของสมการเชิงเส้นสองตัวแปร AX + By + C = 0 คือ มีตัวแปรสองตัวและต้องไม่มีการคูณกันของตัวแปร เลขชี้กำลังของตัวแปรแต่ละตัวต้องเป็นหนึ่ง สัมประสิทธิ์ตัวใดตัวหนึ่งเป็นศูนย์ได้ แต่สัมประสิทธิ์ของตัวแปรทั้งสองจะเป็นศูนย์พร้อมกันไม่ได้

 

 กรณีที่กำหนดสมการเชิงเส้นสองตัวแปรในรูป Ar + By + C = 0 ถ้าไม่ระบุเงื่อนไขของ x และ y ให้ถือว่า x และ y แทนจำนวนจริงใด ๆ และกราฟของสมการเชิงเส้นสองตัวแปรนี้จะเป็นเส้นตรงที่เรียกว่า “กราฟเส้นตรง”

แก้สมาการของกราฟเชิงเส้นสองตัวแปร

เมื่อกำหนดสมการเชิงเส้นสองตัวแปรให้ เราสามารถหาคู่อันดับ (x,y) ที่เมื่อแทนค่า x และค่า y ในสมการแล้วทำให้สมการเป็นจริง โดยการกำหนดค่า x แล้วหาค่า y จากสมการ ดังตัวอย่างเช่น

สมการเชิงเส้น

แก้สมการเชิงเส้น

เมื่อนำคู่อันดับที่สอดคล้องกับสมการ 5x+3y-10=0 เช่น (-1,5) ,(0,10/3) และ (2,0) มาเขียนกราฟ จะได้กราฟเป็นจุดที่อยู่ในแนวเส้นตรงเดียวกัน ดังนี้

กราฟของสมการเชิยงเส้นสองตัวแปร

ในกรณีที่ไม่ระบุเงื่อนไขของ x และ y ในสมการเช่น 5x+3y-10=0 ให้ถือว่า x และ y แทนจำนวนจริงใดๆ นั่นหมายความว่า ยังมีคู่อันดับ (x,y) เหล่านั้นก็จะอยู่บนเส้นตรงที่เป็นกราฟของสมการนี้ด้วย

คลิปวิดีโอตัวอย่างเรื่องกราฟของสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook

หลักการใช้ Simple Present Tense+ Present Continuous Tense

สวัสดีนักเรียนชั้นม.1 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง” หลักการใช้ Simple Present Tense+ Present Continuous Tense” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัว และเทคนิคการจำและนำ Tense ไปใช้กันจร้า ซึ่ง Simple Present Tenseและ Present Continuous Tense นั้นมีสิ่งที่เหมือนกันคือ อยู่ในรูปปัจจุบัน (Present) เหมือนกัน

แบบฝึกหัดการให้เหตุผล

แบบฝึกหัดการให้เหตุผล

แบบฝึกหัดการให้เหตุผล   แบบฝึกหัดการให้เหตุผล ประกอบไปด้วยการให้เหตุผลแบบอุปนัยและการให้เหตุผลแบบนิรนัย ซึ่งแบบฝึกหัดนี้จะช่วยให้น้องๆได้ฝึกฝนการทำโจทย์จนน้องๆเชี่ยวชาญและส่งผลให้น้องๆทำข้อสอบได้แบบไม่ผิดพลาด ถ้าเรารู้เฉยๆเราอาจจะทำข้อสอบได้แต่การที่เราฝึกทำโจทย์ด้วยจะทำให้เราทำข้อสอบได้แน่นอนค่ะ แบบฝึกหัดเพิ่มเติมและข้อสอบ O-Net ตัวอย่างต่อไปนี้เป็นข้อสอบ O-Net ของปีก่อนๆ   1.) พิจารณาการอ้างเหตุผลต่อไปนี้ ก. เหตุ 1. ถ้าฝนไม่ตกแล้วเดชาไปโรงเรียน   2. ฝนตก      ผล   

Like & Dislike ในการพูดถึงความชอบ และการให้ข้อมูลเกี่ยวกับตนเอง

สวัสดีน้องๆ ป. 5 ทุกคนนะครับผม วันนี้เราจะมาลองฝึกใช้ประโยคที่เอาไว้บอกความชอบของเรากัน พร้อมกับการให้ข้อมูลเกี่ยวกับตัวเองเบื้องต้นครับ ถ้าพร้อมแล้วไปลุยกันเลย

เรนจ์ของความสัมพันธ์

เรนจ์ของความสัมพันธ์ เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย   กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหลัง เช่น = {(2, 2), (3, 5), (8, 10)} จะได้ว่า  = {2, 5,

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้