สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-มุม-ด้าน

ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ ด้าน-มุม-ด้าน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมื่อเราต้องการจะพิสูจน์ถึงสิ่งของใดๆว่ามีความเท่ากันทุกประการ เราจำเป็นต้องมีหลักการที่นำมาใช้ได้จริง ดังเช่นในบทความนี้ที่กล่าวถึงรูปสามเหลี่ยมที่เท่ากันทุกประการโดยใช้ความยาวของด้าน 2ด้าน และ มุม 1มุม ในการพิสูจน์

ความเท่ากันทุกประการของรูปสามเหลี่ยม

บทนิยาม รูปสามเหลี่ยม ABC คือรูปที่ประกอบด้วยส่วนของเส้นตรงสามเส้น AB, BC และ AC เชื่อมต่อจุด A, B และ C ที่ไม่อยู่บนเส้นตรงเดียวกัน เรียกจุด A, B และ C ว่า “จุดยอดมุมรูปสามเหลี่ยม ABC”

สามเหลี่ยมที่เท่ากันทุกประการ

สามเหลี่ยมเท่ากันทุกประการ

  1. AB = DE, AC = DF และ BC = EF
  2. <A = <D, <B = <E และ <C = <F

ลักษณะดังนี้คือ ด้านที่ยาวเท่ากัน มุมที่มีขนาดเท่ากัน หรือจุดที่ทับกันได้ เรียกว่า “สมนัยกัน”

ดังนั้น จะได้ว่ารูปสามเหลี่ยมสองรูปเท่ากันทุกประการเมื่อด้านและมุมของรูปสามเหลี่ยมมีขนาดเท่ากันเป็นคู่ๆ

ในทางกลับกัน เมื่อรูปสามเหลี่ยม ABC และรูปสามเหลี่ยม DEF มีด้านคู่ที่สมนัยกันยาวเท่ากันคือ AB = DE,
BC = EF และ CA = FD และมุมที่สมนัยกันมีขนาดเท่ากันคือ <A = <D, <B = <E และ <C= <F ดังรูป

สามเหลียมที่เท่ากัน

สรุปได้ว่า รูปสามเหลี่ยมสองรูปเท่ากันทุกประการก็ต่อเมื่อด้านคู่ที่สมนัยกันและมุมคู่ที่สมนัยกันของรูปสามเหลี่ยมทั้งสองรูปนั้นมีขนาดเท่ากันเป็นคู่ ๆ

จากรูปจะได้ว่า   AB สมนัยกับ XY

AC สมนัยกับ XY

BC สมนัยกับ YZ

<A สมนัยกับ <X

<B สมนัยกับ <Y

<C สมนัยกับ <Z

จากรูปจะได้ว่า   MN = PQ

MO = PR

ON = QR

<M = <P

<O = <R

<N = <Q

รูปสามเหลี่ยมที่สัมพันธ์กันแบบด้าน-มุม-ด้าน

ในกรณีที่ต้องการทราบว่าสามเหลี่ยมสองรูปใดเท่ากันทุกประการโดยไม่จำเป็นต้องยกมาทับกัน เราสามารถใช้หลักการทางเรขาคณิตในการพิสูจน์ โดยอาศัยค้านกับมุมที่เท่ากันสามคู่ทั้งนี้ต้องขึ้นอยู่กับกรณีที่เป็นไปได้และถือเป็นสัจพจน์ ดังต่อไปนี้

ถ้ารูปสามเหลี่ยมสองรูปใด ๆ มีด้านยาวเท่ากันสองคู่และมุมในระหว่างด้านคู่ที่ยาวเท่ากันมีขนาดเท่ากันแล้ว ผลที่ตามมาคือ ด้านที่สมนัยที่เหลืออีก 1 คู่จะยาวเท่ากัน และมุมที่สมนัยกันที่เหลืออีก 2 คู่จะมีขนาดเท่ากันเป็นคู่ ๆ

สรุปได้ว่า

ถ้ารูปสามเหลี่ยมสองรูปมีความสัมพันธ์กันแบบด้าน-มุม-ด้าน (ด.ม.ด. ) กล่าวคือ มีด้านยาวเท่ากันสองคู่ และมุมในระหว่างด้านคู่ที่ยาวเท่ากันมีขนาดเท่ากัน แล้วรูปสามเหลี่ยมสองรูปนั้นเท่ากันทุกประการ

พิสูจน์   เนื่องจาก            1) ด้าน BO = ด้าน OC (กำหนดให้)

2) มุม AOB =มุม AOC (ต่างเท่ากับ 90องศา)
3) ด้าน AO = ด้าน OA (เป็นด้านร่วม)

ดังนั้น สามเหลี่ยมABO เท่ากันทุกประการกับสามเหลี่ยมACO  (ด.ม.ด.)

คลิปตัวอย่างเรื่องสามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-มุม-ด้าน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ การวัดความยาวส่วนโค้ง ค่าของฟังก์ชันไซน์และโคไซน์ หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ   ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

Suggesting Profile

การแสดงความต้องการ เสนอและให้ความช่วยเหลือ ตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ

สวัสดีค่ะนักเรียนชั้นม. 3 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิค การแสดงความต้องการ เสนอและให้ความช่วยเหลือ ตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า การแสดงความต้องการ     Question: สงสัยมั้ยว่า need/want /would like to have สามคำนี้ต่างกันยังไง? ตัวอย่างการใช้ need VS want  ในประโยคบอกเล่า เช่น

ทฤษฎีบทพีทาโกรัส

ทฤษฎีบทพีทาโกรัส

บทความนี้น้องๆจะได้เรียนรู้กี่ยวกับการพิสูจน์ที่ทฤษฎีบทพีทาโกรัส ระหว่างด้านทั้งสามของสามเหลี่ยมมุมฉาก กำลังสองของด้านตรงข้ามมุมฉากเท่ากับผลรวมของกำลังสองของอีกสองด้านที่เหลือในแง่ของพื้นที่

เสียงสระในภาษาไทย

เสียงในภาษาไทยมีทั้งหมด 3  เสียงคือพยัญชนะ สระ และวรรณยุกต์ จากที่เราได้ทำความเข้าใจในเรื่องเสียงพยัญชนะกันไปแล้ว วันนี้เราจะมาเรียนรู้อีกเสียงหนึ่งที่มีความสำคัญไม่แพ้กันก็คือเรื่องเสียงสระนั่นเองค่ะ เสียงสระจะมีกี่ชนิด แบ่งเป็นชนิดใดบ้าง ไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ     เสียงสระ เสียงสระเป็นเสียงที่เกิดจากลมภายในปอด เปล่งออกมาโดยใช้การเคลื่อนไหวของลิ้นและริมฝีปาก เสียงที่ได้จะแบ่งออกได้ดังนี้ค่ะ สระเดี่ยว สระเดี่ยวหรือสระแท้ มีทั้งหมด 18 เสียง เสียงสั้นและเสียงยาวจับกันได้ 9

การอ่านบทร้อยกรอง

การอ่านบทร้อยกรอง กาพย์และโคลงอ่านอย่างไรให้ไพเราะ

น้อง ๆ คงจะรู้การคำประพันธ์อย่างกาพย์และโคลงกันอยู่แล้วใช่ไหมคะ เพราะวรรณคดีไทยหลาย ๆ เรื่องที่เราเรียนกันมา ก็ใช้กาพย์และโคลงแต่งกันเสียส่วนใหญ่ และหลังจากที่ได้เรียนลักษณะการแต่งกาพย์กับโคลงสี่สุภาพ ให้ไพเราะกันไปแล้ว จะแต่งอย่างเดียวโดยไม่อ่านให้ถูกต้องก็ไม่ได้ใช่ไหมล่ะคะ ดังนั้นบทเรียนวันนี้จะพาร้อง ๆ ไปเรียนรู้เรื่อง การอ่านบทร้อยกรอง กันบ้าง ว่ามีวิธีอ่านอย่างไรให้ถูกต้องและไพเราะ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   การอ่านบทร้อยกรอง     การอ่านบทร้องกรอง ประเภทกาพย์

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย เมื่อ เป็นฟังก์ชัน จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1