สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ ด้าน-ด้าน-ด้าน
Share on twitter
Share on facebook
สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

สารบัญ

เมื่อเราต้องการจะพิสูจน์ถึงสิ่งของใดๆว่ามีความเท่ากันทุกประการ เราจำเป็นต้องมีหลักการที่นำมาใช้ได้จริง ดังเช่นในบทความนี้ที่กล่าวถึงรูปสามเหลี่ยมที่เท่ากันทุกประการโดยใช้ความยาวของด้าน 3 ด้าน ในการพิสูจน์

สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

ในทางคณิตศาสตร์เมื่อสามารถเคลื่อนที่รูปเรขาคณิตรูปหนึ่งไปทับรูปเรขาคณิตอีกรูปหนึ่งได้สนิท จะกล่าวว่ารูปเรขาคณิตสองรูปนั้น เท่ากันทุกประการ

ถ้ารูปสามเหลี่ยมสองรูปใดๆ มีด้านยาวเท่ากันสามคู่แล้ว รูปสามเหลี่ยมสองรูปนั้นจะเท่ากันทุกประการ

เท่ากันแบบ ด้าน ด้าน ด้าน

เท่ากันทุกประการ

ตัวอย่างที่ 1

จากรูป จงพิสูจน์ว่า BD แบ่งครึ่ง มุมABC

สามเหลี่ยมหน้าจั่วเท่ากันทุกปประการ

ความเท่ากันทุกประการ

ตัวอย่างที่ 2

กำหนดให้สามเหลี่ยมMNQ และสามเหลี่ยมMOP เป็นรูปสามเหลี่ยมหน้าจั่ว 2รูป ที่ NO = PQ ให้พิสูจน์ว่า มุมNMO = มุมPMQ โดยใช้ความสัมพันธ์แบบ ด้าน-ด้าน-ด้าน

เท่ากันแบบด้าน-ด้าน-ด้าน

สามเหลี่ยมเท่ากันทุกประการ

ตัวอย่างที่ 3

จากรูปกำหนดให้ SE = TE และ SA = TA จงพิสูจน์ว่า สามเหลี่ยมSEA และ สามเหลี่ยมTEA เป็นรูปสามเหลี่ยมสองรูปที่เท่ากันทุกประการ

รูปทรงสามเหลี่ยม

สามเหลี่ยมที่ท่ากันแบบด้าน-ด้าน-ด้าน

คลิปตัวอย่างเรื่องสามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

+1
NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook
คำเชื่อม Conjunction

คำเชื่อมในภาษาอังกฤษ (Conjunctions)

สวัสดีค่ะนักเรียนชั้นม.4 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “คำเชื่อมในภาษาอังกฤษ หรือ Conjunctions” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด ความหมาย Conjunctions คือ คำที่ใช้เชื่อมระหว่างประโยคต่อประโยค คำต่อคำ หรือระหว่างกริยาต่อกริยา และอื่นๆ ดังตัวอย่างด้านล่างเลยจ้า ตัวอย่างเช่น เชื่อมนามกับนาม Time and tide wait for no man. เวลาและวารีไม่เคยรอใคร

ความสัมพันธ์ของเศษส่วนและทศนิยม

ความสัมพันธ์ที่ “รู้จักฉัน รู้จักเธอ” ของเศษส่วนและทศนิยม

เศษส่วนและทศนิยมมีความสัมพันธ์กันคือสามารถเขียนเศษส่วนให้อยู่ในรูปของทศนิยมหรือเขียนทศนิยมให้อยู่ในรูปของเศษส่วนได้โดยค่าของเศษส่วน และทศนิยมนั้นจะมีค่าเท่ากัน บทความนี้จะอธิบายหลักการความสัมพันธ์ของเศษส่วนและทศนิยมพร้อมวิธีคิดที่เห็นภาพ ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้ คือการเปลี่ยนเศษส่วนให้เป็นทศนิยมและการเปลี่ยนทศนิยมให้เป็นเศษส่วนแล้วยังมีเทคนิคการสังเกตง่ายๆที่จะสามารถทำให้เราทำได้อย่างรวดเร็วและถูกต้องยิ่งขึ้น

โจทย์ปัญหาเลขยกกำลัง

โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง

โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง          เราสามารถนำความรู้เกี่ยวกับเลขยกกำลังที่เรียนมาไม่ว่าจะเป็น การคูณ การหาร เลขยกกำลัง และการเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก ไปประยุกต์ใช้ในการแก้ โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง รวมทั้งไปประยุกต์ใช้ในชีวิตประจำวันได้มากมาย  ในบทความนี้จะกล่าวถึงการนำความรู้เกี่ยวกับเลขยกกำลังไปใช้แก้โจทย์ปัญหาคณิตศาสตร์ ดังตัวอย่างต่อไปนี้ ตัวอย่างที่ 1 – 3 ตัวอย่างที่ 1  เด็กชายศิระนำแท่งลูกบาศก์ไม้ขนาด 5³ ลูกบาศก์เซนติเมตร  มาจัดวางในลูกบาศก์ใหญ่ที่มีความยาวของแต่ละด้านเป็น

ป.5 ไวยากรณ์เรื่อง There is _ There are และ How many

ไวยากรณ์เรื่อง There is / There are และ How many

สวัสดีค่ะนักเรียนชั้น ป.5 ที่รักทุกคน วันนี้เราจะไปเรียนรู้ “ไวยากรณ์เรื่อง There is / There are และ How many” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ ถามก่อนเรียน: อ้าวแล้ว Have/has ก็แปลว่า “มี” เหมือนกันไม่ใช่เหรอ แล้ว There is/There are

ป6การใช้ love, like, enjoy, hate ในการเเต่งประโยค

การใช้ love, like, enjoy, hate ในการเเต่งประโยค

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้  love, like, enjoy, hate ในการเเต่งประโยค หากพร้อมแล้วก็ไปลุยกันโลดเด้อ Let’s go!   โครงสร้าง: In my free time/ In my spare time,…     In my

ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์ ตัวผกผันของความสัมพันธ์ r คือความสัมพันธ์ใหม่ที่เกิดจากการสลับตำแหน่งของสมาชิกตัวหน้ากับสมาชิกตัวหลังของคู่อันดับทุกคู่ในความสัมพันธ์ r เขียนแทนด้วย   ซึ่ง = {(y, x) : (x, y ) ∈ r} เช่น r = {(1, 2), (3, 4), (5,

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้