บทกลับของทฤษฎีบทพีทาโกรัส

ในบทความนี้เราจะได้เรียนรู้ความหมายและหลักการในการแสดงเหตุและผลของบทกลับของทฤษฎีบทพีทาโกรัส
บทกลับของทฤษฎีบทพีทาโกรัส

สารบัญ

Add LINE friends for one click to find article.

จะเห็นได้ว่าบทกลับของทฤษฎีบทพีทาโกรัสเป็นการนําผลของทฤษฎีบทพีทาโกรัสมาเป็นเหตุและนําเหตุมาเป็นผลนั่นเอง เพื่อประยุกต์ใช้ในรูปสามเหลี่ยมแต่ละลักษณะนั่นเอง

บทกลับของทฤษฎีบทพีทาโกรัส

บทกลับของทฤษฎีบทพีทาโกรัสกล่าวว่า สำหรับรูปสามเหลี่ยมใดๆ ถ้ากำลังสองของความยาวของด้านด้านหนึ่งเท่ากับผลบวกของกำลังสองของความยาวของด้านอีกสองด้านแล้วรูปสามเหลี่ยมนั้นเป็นสามเหลี่ยมมุมฉาก

โดยบทกลับของทฤษฎีบทพีทาโกรัสเป็นการนำผลของทฤษฎีบทพีทาโกรัสมาเป็นเหตุและนำเหตุมาเป็นผล ดังนั้น

เหตุ: มีรูปสามเหลี่ยมรูปหนึ่ง เป็นรูปสามเหลี่ยมมุมฉาก

ผล : กำลังสองของความยาวของด้านตรงข้ามมุมฉาก เท่ากับ ผลบวกของกำลังสองของความยาวของด้านประกอบมุมฉากของรูปสามเหลี่ยม

เมื่อนำผลข้างต้นมาเป็นเหตุ และเหตุมาเป็นผล ก็จะได้บทกลับของทฤษฎีบทพีทาโกรัส ดังนี้

บทกลับพีทาโกรัส

ตัวอย่างที่ 1

กำหนดความยาวของด้านทั้งสามของรูปสามเหลี่ยมให้ให้แสดงว่ารูปสามเหลี่ยมนั้นเป็นรูปสามเหลี่ยมมุมฉากหรือไม่

1) 7, 9, 11          2) 8, 15, 17

ตัวอย่างบกลับพีทาโกรัส

ในกรณีที่โจทย์กำหนดความยาวให้ 3 ด้าน และถามว่านำมาประกอบกันเป็นรูปสามเหลี่ยมมุมฉากหรือไม่ ถ้าใช่ยังสามารถตรวจสอบต่อไปได้อีกว่าเป็นรูปสามเหลี่ยมอะไรโดยพิจารณาให้ ดังนี้

ทฤษฎีบทกลับ

และความยาวของด้านทั้งสามต้องสัมพันธ์กันดังนี้คือ c < a + b มิฉะนั้นจะนำมาสร้างรูปสามเหลี่ยมไม่ได้

ตัวอย่างที่ 2

กำหนดความยาวของด้านให้สามด้าน นำมาสร้างรูปสามเหลี่ยมจะได้รูปสามเหลี่ยมอะไร

1) 2, 3,6            2) 3, 4, 5            3) 4 5, 6            4) 5, 6, 8

ตัวอย่างบทกลับพีทาโกรัส

คลิปตัวอย่างเรื่องบทกลับของทฤษฎีบทพีทาโกรัส

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article.
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

comparison of adjectives

Comparison of Adjectives

สวัสดีน้องๆ ม. 1 ทุกคนนะครับ วันนี้เราจะมาทำความรู้จักกับเรื่องของ Comparison of Adjectives ซึ่งจะคืออะไรและเอาไปใช้อะไรได้บ้าง เราลองไปดูกันเลยครับ

พระบรมราโชวาท

พระบรมราโชวาท ศึกษาตัวบทและคุณค่าที่อยู่ในวรรณคดี

พระบรมราโชวาท เป็นวรรณคดีไทยที่ทรงคุณค่าอีกเรื่องหนึ่ง ที่มีมาตั้งแต่สมัยรัชกาลที่ 5 หลังจากที่ได้เรียนเกี่ยวกับประวัติความเป็นมาและเรื่องย่อกันไปแล้ว บทเรียนในวันนี้ก็จะพาน้อง ๆ ไปเจาะลึกถึงตัวบทเด่น ๆ ว่ามีใจความอย่างไร รวมถึงศึกษาคุณค่าที่สอดแทรกอยู่ในเรื่องอีกด้วย ถ้าพร้อมแล้วไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ   ตัวบทเด่น ๆ ในพระบรมราโชวาท   ถอดความ ความตอนนี้กล่าวถึงพระประสงค์ของรัชกาลที่ 5 ที่ไม่ต้องการให้พระโอรสใช้คำนำหน้าเป็นเจ้า แต่ให้ใช้คำนำหน้าเป็นนายหรืออาจให้ใช้คำลงท้ายแบบขุนนางชั้นสูงได้เท่านั้น เพราะเมื่อประกาศให้คนรู้ว่าเป็นใครสิ่งที่จะตามมาก็คือการต้องรักษายศไว้

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย เมื่อ เป็นฟังก์ชัน จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

ความรู้เกี่ยวกับ การสื่อสาร มีอะไรบ้างที่เราควรรู้?

ความรู้เกี่ยวกับการสื่อสาร เป็นเรื่องที่สำคัญอย่างมากในปัจจุบัน แม้ว่าเราจะสื่อสารกับผู้คนอยู่แล้วทุกวัน แต่จะทำอย่างไรให้ตนเองสามารถสื่อสารได้อย่างถูกต้อง มีเรื่องไหนที่ควรรู้และควรระวัง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่องการสื่อสารให้ดียิ่งขึ้นไปอีก ถ้าอยากรู้แล้วว่าจะเป็นอย่างไรก็ไปดูกันเลยค่ะ   การสื่อสาร คืออะไร?   เป็นกระบวนการถ่ายทอดหรือแลกเปลี่ยนความคิด ข้อมูล ข้อเท็จจริง ความรู้ ความรู้สึก จากบุคคลหนึ่งไปยังอีกบุคคลหนึ่ง ให้มีความเข้าใจตรงกัน     การสื่อสารสำคัญอย่างมากตั้งแต่ในชีวิตประจำวันไปจนถึงอุตสาหกรรม การปกครอง การเมืองและเศรษฐกิจ

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

Present Perfect

Present Perfect ในภาษาอังกฤษ

สวัสดีน้องๆ ม.​ 4 ทุกคนนะครับ วันนี้เราจะมาพูดถึงเรื่อง Present Perfect ในภาษาอังกฤษ จะเป็นอย่างไรลองไปดูกันเลยดีกว่าครับ

Nockacademy web logo 3

ทดลองฟรี!

และรับข่าวสารข้อมูลเพิ่มเติม ง่าย ๆ เพียงแค่แอด LINE

Nockacademy web logo 3

ทดลองฟรี!

รับข่าวสารข้อมูลเพิ่มเติม ง่าย ๆ เพียงแค่แอด LINE​