โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง

โจทย์ปัญหาเลขยกกำลัง

สารบัญ

Add LINE friends for one click to find article.

โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง

         เราสามารถนำความรู้เกี่ยวกับเลขยกกำลังที่เรียนมาไม่ว่าจะเป็น การคูณ การหาร เลขยกกำลัง และการเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก ไปประยุกต์ใช้ในการแก้ โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง รวมทั้งไปประยุกต์ใช้ในชีวิตประจำวันได้มากมาย  ในบทความนี้จะกล่าวถึงการนำความรู้เกี่ยวกับเลขยกกำลังไปใช้แก้โจทย์ปัญหาคณิตศาสตร์ ดังตัวอย่างต่อไปนี้

ตัวอย่างที่ 1 – 3

ตัวอย่างที่ 1  เด็กชายศิระนำแท่งลูกบาศก์ไม้ขนาด 5³ ลูกบาศก์เซนติเมตร  มาจัดวางในลูกบาศก์ใหญ่ที่มีความยาวของแต่ละด้านเป็น 125 เซนติเมตร  จงหาเลขยกกำลังที่แทนปริมาตรของลูกบาศก์ขนาดใหญ่นี้

วิธีทำ   ต้องการวางลูกบาศก์ให้มีความยาวแต่ละด้านเป็น  125 เซนติเมตร

           ใช้แท่งลูกบาศก์ไม้  ¹²⁵⁄₅  = 25  =  5² แท่ง

           ปริมาตรของลูกบาศก์ขนาดใหญ่   =  ปริมาตรของแท่งไม้ x จำนวนแท่งลูกบาศก์ไม้

        =  5³x (5² x 5² x 5²)

        =  5³⁺²⁺²⁺²

        =  5⁹  ลูกบาศก์เซนติเมตร 

ตอบ    ปริมาตรของลูกบาศก์ขนาดใหญ่นี้เท่ากับ   5⁹  ลูกบาศก์เซนติเมตร

ตัวอย่างที่ 2  โลกหนักประมาณ  5 x 10²⁴  กิโลกรัม  ดวงอาทิตย์หนักเป็น  4 x 10  เท่าของโลก จงหาน้ำหนักของดวงอาทิตย์

วิธีทำ  โลกหนักประมาณ  5 x 10²⁴  กิโลกรัม 

          ดวงอาทิตย์หนักเป็น  4 x 10  เท่าของโลก

          ดังนั้น  ดวงอาทิตย์หนักประมาณ  (5 x 10²⁴) x (4 x 10⁵)  กิโลกรัม

                                                       =  (5 x 4) x (10²⁴ x 10⁵)

                                                       =  20 x 10²⁴

                                                       =  20 x 10²⁹

                                                       =   2 x 10 x 10²⁹

                                                       =  2  x 10³⁰  กิโลกรัม

ตอบ   ดวงอาทิตย์หนักประมาณ  2  x 10³⁰  กิโลกรัม

ตัวอย่างที่ 3  ไม้กระดานแผ่นหนึ่งกว้าง  32 เซนติเมตร ยาว 64 เซนติเมตร  หนา 2 เซนติเมตร  จงหาว่าไม้กระดานแผ่นนี้มีปริมาตรกี่ลูกบาศก์เซนติเมตร (ตอบในรูปเลขยกกำลัง)

วิธีทำ    ปริมาตรของไม้กระดานแผ่นนี้   =  ความกว้าง x ความยาว x ความหนา

                                                         =  32 x 64 x 2   ลูกบาศก์เซนติเมตร

                                                         =  (2 x 2 x 2 x 2 x 2) x (2 x 2 x 2 x 2 x 2 x 2) x 2

                                                         =  2⁵ x 2⁶ x 2

                                                         =  2⁵¹

                                                         =  2¹²   ลูกบาศก์เซนติเมตร                      

ตอบ   ไม้กระดานแผ่นนี้มีปริมาตร  2¹²   ลูกบาศก์เซนติเมตร

ตัวอย่างที่ 4 – 6

ตัวอย่างที่ 4     ถ้าโลกของเรามีมวล  6 x 10²⁴  กิโลกรัม  แล้วมวลของดวงอาทิตย์จะมีค่าเท่าใด เมื่อมวลของดวงอาทิตย์เท่ากับ  330,000  เท่าของมวลโลก

 วิธีทำ   มวลของดวงอาทิตย์เท่ากับ  330,000 = 3.3 x 10⁵ เท่าของมวลโลก

            มวลของโลกเท่ากับ  6 x 10²⁴  กิโลกรัม

            ดังนั้น  มวลของดวงอาทิตย์เท่ากับ  3.3 x 10⁵ x 6 x 10²⁴  =  (3.3 x 6) x (10⁵x 10²⁴

=   19.8 x 10²⁹

=  1.98 x 10 x 10²⁹

=  1.98 x 10³⁰  กิโลกรัม

ตอบ  มวลของดวงอาทิตย์มีค่าเท่ากับ  1.98 x 10³⁰  กิโลกรัม

ตัวอย่างที่ 5  วัตถุชิ้นหนึ่งอยู่ห่างจากโลก 1.5 x 10⁹  ปีแสง  ถ้า 1 ปีแสงเท่ากับ  9.4 x 10¹²  กิโลเมตร  แล้ววัตถุนี้จะอยู่ห่างจากโลกกี่กิโลเมตร 

วิธีทำ  ระยะทาง   1  ปีแสงเท่ากับ  9.4 x 10¹²  กิโลเมตร

           ระยะทาง 1.5 x 10⁹  ปีแสง เท่ากับ   9.4 x 10¹² x 1.5 x 10⁹  =  (9.4 x 1.5 ) x (10¹²  x 10⁹)  

   =  14.1 x 10¹²⁺⁹   

   =  14.1 x 10²¹    

   =   1.41 x 10 x 10²¹ 

   =   1.41 x 10²²  กิโลเมตร                 

ตอบ   วัตถุนี้จะอยู่ห่างจากโลก  1.41 x 10²²  กิโลเมตร

ตัวอย่างที่ 6  โรงงานแห่งหนึ่งต้องการผลิตสินค้าจำนวน 2 x 10⁴ ชิ้น แต่ละชิ้นต้องใช้โลหะ 9.1 x 10⁻³ กิโลกรัม  จงหาว่าต้องใช้โลหะทั้งหมดกี่กิโลกรัม

วิธีทำ  ต้องใช้โลหะทั้งหมดเท่ากับ  2 x 10⁴ x 9.1 x 10⁻³ =  (2 x 9.1) (10⁴ x 10⁻³)     

    =  18.2 10    

    =  1.82 10 10   

    =  1.82 10²   กิโลกรัม     

ตอบ   ต้องใช้โลหะทั้งหมด  1.82 10²  กิโลกรัม

ตัวอย่างที่ 7 – 8

ตัวอย่างที่ 7  ประมาณกันว่าในปี ค.ศ. 2060 โลกจะมีประชากรมากกว่า 10,000,000,000  คน ถ้าพื้นโลกส่วนที่เป็นที่อยู่อาศัยได้มีพื้นที่ประมาณ 15 x 10⁷ ตารางกิโลเมตร จงหาความหนาแน่นของประชากรโลกโดยเฉลี่ยต่อพื้นที่ 1 ตารางกิโลเมตร  

วิธีทำ  ความหนาแน่นหาได้จาก ความหนาแน่น = ประชากร/พื้นที่โลก

           ปี ค.ศ. 2060 โลกจะมีประชากรมากกว่า  10,000,000,000  คน

           พื้นโลกส่วนที่เป็นที่อยู่อาศัยได้มีพื้นที่ประมาณ  15 x 10⁷ ตารางกิโลเมตร

           จะได้ว่า ความหนาแน่นของประชากรต่อพื้นที่โลกเท่ากับ  \frac{10,000,000,000 }{15\times 10^{7}}=\frac{1\times 10^{10}}{15\times 10^{7}}     

     =\frac{1}{15}\times \frac{10^{10}}{10^{7}}   

      =  0.066 x 10³

      =  6.6 x 10  คน/ตร.กม.

ตอบ ในปี ค.ศ. 2060 ความหนาแน่นของประชากรโลกโดยเฉลี่ยเท่ากับ  6.6 x 10  หรือ 66 คน/ตร.กม.

ตัวอย่างที่ 8  เชื้อไวรัสที่ทำให้เกิดโรคหวัดแต่ละตัวยาวประมาณ  5 x 10⁻⁷  เมตร ถ้าไวรัสชนิดนี้เรียงต่อกันเป็นสายยาว  6 x 10⁻³ เมตร จงหาว่ามีไวรัสอยู่ประมาณกี่ตัว

วิธีทำ  ไวรัสเรียงต่อกันเป็นสายยาวประมาณ  6 x 10⁻³ เมตร

  ถ้าไวรัสแต่ละตัวยาวประมาณ  5 x 10⁻⁷  เมตร

  จะมีไวรัสที่เรียงต่อกันอยู่ประมาณ  \frac{6\times 10^{-3}}{5\times 10^{-7}}  =  \frac{6\times 10^{7}}{5\times 10^{3}}  ตัว

     =  \frac{60\times 10^{6}}{5\times 10^{3}}

     =  12 x 10⁶⁻³

     =  12 x 10³   

     =  12,000  ตัว

ตอบ  มีไวรัสที่เรียงต่อกันอยู่ประมาณ 12,000 ตัว

สรุป

หลักในการแก้โจทย์ปัญหามีดังนี้

  1. ต้องรู้สิ่งที่โจทย์กำหนด
  2. ต้องรู้สิ่งที่โจทย์ถาม
  3. ดำเนินการเพื่อแก้โจทย์ปัญหา โดยใช้ความรู้เรื่องเลขยกกำลัง
คลิปวิดีโอ โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง

        คลิปวิดีโอนี้ได้รวบรวมวิธี การแก้โจทย์ปัญหาเกี่นวกับเลขยกกำลัง  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article.
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การออกเสียงพยัญชนะไทย-01

เสียงพยัญชนะไทย ออกเสียงอย่างไรให้ถูกต้อง

  เชื่อว่าน้อง ๆ หลายคงเคยสงสัยเรื่องการออกเสียงพยัญชนะไทยกันไม่มากก็น้อย เพราะพยัญชนะในภาษาไทยของเรานั้นมีด้วยกัน 44 ตัว แต่กลับมีหน่วยเสียงเพียงครึ่งเดียวเท่านั้น ทำไมการออกเสียงพยัญชนะไทยถึงไม่สามารถออกเสียงตามรูปอักษรทั้ง 44 รูปได้? ไหนจะพยัญชนะท้ายที่เขียนอีกอย่างแต่ดันออกเสียงไปอีกอย่าง บทเรียนในวันนี้จะช่วยไขข้อข้องใจให้กับน้อง ๆ หรือคนที่กำลังสับสนเรื่องการออกเสียงพยัญชนะไทย ให้กระจ่างและสามารถออกเสียงได้อย่างถูกต้อง ดังนั้น เราไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ     เสียงพยัญชนะไทย เสียงพยัญชนะ คือ

เรียนรู้เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่�

เรียนรู้เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ

สวัสดีนักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับ  “เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันโลดเด้อ Let’s go!   ทบทวน Present Simple Tense     Present แปลว่า ปัจจุบัน ดังนั้น Present Simple

พื้นที่ผิวทรงกรวยและลูกบาศก์

พื้นที่ผิวทรงกรวยและลูกบาศก์ การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ พื้นที่ผิวทรงกรวย ทรงกรวย คือ รูปทรงเรขาคณิต

การคูณเศษส่วนและจํานวนคละ

การคูณเศษส่วนและจํานวนคละ

บทความนี้จะพาน้อง ๆมารู้จักกับการคูณเศษส่วนและจำนวนคละ รวมถึงเทคนิคการคูณเศษส่วนและจำนวนคละที่ถูกต้องและรวดเร็ว หลังจากอ่านบทความนี้จบสิ่งที่จะได้รับก็คือหลักการคูณเศษส่วนและจำนวนคละประเภทต่าง ๆ การตัดทอนเศษส่วนจำนวนคละและตัวอย่างการคูณเศษส่วนจำนวนคละที่เข้าใจง่ายและเห็นภาพ สามารถนำไปใช้ได้จริงในห้องเรียน

การตั้งคําถามทางสถิติ

การตั้งคําถามทางสถิติ บทความนี้ได้รวบรวมความรู้เรื่อง การตั้งคําถามทางสถิติ ไว้อย่างละเอียด ก่อนอื่นน้องมาทำความเข้าใจกับความหมายของ “คำถามทางสถิติ” คำถามทางสถิติ  หมายถึง คำถามที่มีคำตอบหรือคาดว่าจะได้รับคำตอบมากกว่า 1 คำตอบ รวมถึงคำถามที่ต้องการคำตอบซึ่งได้มาจากการรวบรวมข้อมูลพื้นฐานบางอย่างแล้วนำมาจำแนก  คำนวณ หรือวิเคราะห์เพื่อใช้ตอบคำถามนั้น คำถามทางสถิติจะต้องประกอบด้วยองค์ประกอบสำคัญ 3 ส่วน ได้แก่ ระบุสิ่งที่ต้องการศึกษาได้ มีกลุ่มบุคคลหรือสิ่งที่จะเก็บรวบรวมข้อมูลที่หลากหลาย สามารถคาดการณ์ได้ว่าคำตอบที่จะเกิดขึ้นมีความแตกต่างกัน ตัวอย่างคำถามทางสถิติ คำถามต่อไปนี้เป็นคำถามทางสถิติ อัตราส่วนที่เหมาะสมในการผสมสีทาบ้าน แต่ยี่ห้อควรเป็นอย่างไร

Nockacademy web logo 3

ทดลองฟรี!

และรับข่าวสารข้อมูลเพิ่มเติม ง่าย ๆ เพียงแค่แอด LINE

Nockacademy web logo 3

ทดลองฟรี!

รับข่าวสารข้อมูลเพิ่มเติม ง่าย ๆ เพียงแค่แอด LINE​