สมบัติของจำนวนเต็ม

สมบัติของจำนวนเต็ม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ก่อนที่น้องๆจะได้เรียนรู้ในเรื่องสมบัติของจำนวนเต็ม น้องๆจำเป็นต้องเรียนเรื่อง การเปรียบเทียบจำนวนเต็ม และเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์  ซึ่งบทความนี้ได้รวบรวมสมบัติของจำนวนเต็ม ประกอบด้วย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม ได้แก่ สมบัติการสลับที่ สมบัติการเปลี่ยนหมู่ และสมบัติการแจกแจง  รวมไปถึงสมบัติของหนึ่งและศูนย์ เรามาศึกษาสมบัติแรกกันเลย

สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม

สมบัติการสลับที่

  1. สมบัติการสลับที่สำหรับการบวก

ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a + b = b + a

เช่น 3 + 5 = 5 + 3

จะเห็นว่า 3 + 5 = 8 และ  5 + 3 = 8

ดังนั้น ไม่ว่าสลับที่ของการบวกอย่างไร ผลลัพธ์ที่ได้จะมีค่าเท่ากัน (ไม่มีสมบัติการสลับที่การลบ เพราะเมื่อสลับที่แล้วได้ค่าไม่เท่ากัน)

ตัวอย่างที่ 1  จงหาผลบวกต่อไปนี้
1)  13 + 5 = 5 + 13 = 18
2)  2 + (-8) = (-8) + 2 = -6
3)  (-10) + 3 = 3 + (-10) = -7
4)  (-9) + (-4) = (-4) + (-9) = -13

  1. สมบัติการสลับที่สำหรับการคูณ

ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a x b = b x a

เช่น 3 x 5 =  5 x 3

จะเห็นว่า 3 x 5 = 15 และ  5 x 3 = 15

ดังนั้น ไม่ว่าสลับที่ของการคูณอย่างไร ผลที่ได้จะมีค่าเท่ากัน (ไม่มีสมบัติการสลับที่การหาร เพราะเมื่อสลับที่แล้วได้ค่าไม่เท่ากัน)

ตัวอย่างที่ 2  จงหาผลคูณต่อไปนี้
1)  5 x 4 = 4 x 5 = 20
2)  (-10) x 3 = 3 x (-10) = -30 (ลบคูณบวกได้ลบ)
3)  5 x (-8) = (-8) X 5 = -40 (บวกคูณลบได้ลบ)

4)  (-7) x (-5) = (-5) x (-7) = 35 (ลบคูณลบได้บวก)

ในทางคณิตศาสตร์ สมบัติการสลับที่ของจำนวนเต็ม คือ การเปลี่ยนแปลงตำแหน่งของจำนวนเต็ม โดยไม่ทำให้ผลลัพธ์สุดท้ายเปลี่ยนแปลง

สรุป  เครื่องหมายเหมือนกันคูณกันได้บวก  เครื่องหมายต่างกันคูณกันได้ลบ

สมบัติการเปลี่ยนหมู่

  1. สมบัติการเปลี่ยนหมู่สำหรับการบวก

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว (a + b) + c = a + (b + c)

เช่น (53) + 2 = 5(3 + 2)

จะเห็นว่า (53) + 2 = 10 และ   5 + (3 + 2) = 10

ดังนั้น ไม่ว่าจะเปลี่ยนหมู่ของการบวกอย่างไร ผลที่ได้จะมีค่าเท่ากัน

ตัวอย่างที่ 3  จงหาผลบวกต่อไปนี้
1)  (15 + 5) + 8 = 15 + (5 + 8) = 28
2)  [10 + (-7)] + 9 = 10 + [(-7) + 9] = 12
3)  [(-16) + 6] + 5 = (-16) + (6+5) = -5
4)  [15 + (-3)] + (-8) = 15 + [(-3) + (-8)] = 4
5)  [(-20) + (-10)] + 5 = (-20) + [(-10) + 5] = -25                                                                     

2. สมบัติการเปลี่ยนหมู่สำหรับการคูณ

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว (a x b) x c = a x (b x c)

เช่น (53) x 2 = 30 = 5(3 x 2)

จะเห็นว่า (53) x 2 = 30  และ  5 x (3 x 2) = 30

ดังนั้น ไม่ว่าจะเปลี่ยนหมู่ของการคูณอย่างไร ผลที่ได้จะมีค่าเท่ากัน

ตัวอย่างที่ 4  จงหาผลคูณต่อไปนี้
1)  (10 x 2) x 3 = 10 x (2 x 3) = 60
2)  [(-8) x 5] x 2 = (-8) x (5 x 2) = -80
3)  [4 x (-5)] x 5 = 4 x [(-5) x 5 = -100
4)  [3 x (-4)] x (-2) = 3 x [(-4) x (-2)] = 24
5)  [(-4) x (-2)] x 5=(-4) x [(-2) x 5] = 40

สมบัติการเปลี่ยนหมู่ของจำนวนสามจำนวนที่นำมาคูณกัน จะคูณจำนวนที่หนึ่งกับจำนวนที่สอง หรือคูณ
จำนวนที่สองกับจำนวนที่สามก่อน แล้วจึงคูณกับจำนวนที่เหลือ ผลคูณย่อมเท่ากัน

สมบัติการแจกแจง

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว a x (b + c) = (a x b) + (a x c) และ  

( b + c) x a = (b x a) + (c x a

เช่น 2 x (53) = 16 = (2 x 5) + (2 x 3)

จะเห็นว่า 2 x (53) = 16 และ (2 x 5) + (2 x 3) = 16 

ดังนั้น สมบัติการแจกแจงจึงเป็นความสัมพันธ์ระหว่างการบวกและการคูณ

ตัวอย่างที่ 5  จงหาผลคูณต่อไปนี้
1)   2 x (5 + 7)
= (2 x 5) + (2 x 7)
= 10 + 14
= 24
2)  (-3) x (4 + 6)
= [(-3) x 4] + [(-3) × 6]
= (-12) + (-18)
= -30
3)  (-5) x [(-2) + 8)=[(-5) x (-2)] + [(-5) x 8]
= 10 + (-40)
= -30
4)  (7+3) x 5
= (7X5) + (3×5)                                                                                                                                                                           = 35 + 15                                                                                                                                                                                     = 50                                                                                                                             
5)  [(-9) + 3)] x (-3)                                                                                                                                                                    = [(-9) x (-3)] + [3 x (-3)]
= 27 + (-9)
= 18

สมบัติการแจกแจงจะเป็นการคูณแจงแจงจำนวนเข้าไปในวงเล็บ ซึ่งจะต้องคูณจำนวนทุกจำนวนที่อยู่ในวงเล็บ

สมบัติของหนึ่งและศูนย์

สมบัติของหนึ่ง

–  การคูณจำนวนใดๆ ด้วยหนึ่ง หรือหนึ่งคูณจำนวนใดๆ จะได้ผลคูณเท่ากับจำนวนนั้นเสมอ

เช่น 87 x 1 = 87

หรือ 1 x 87 = 87

ตัวอย่างที่ 6 จงหาผลลัพธ์ต่อไปนี้
1)   1 x 14 = 14
2)   (-5) x 1 = -5
3)   (-1) x 1 = -1
4)   1 x (-16) = -16
5)   27x (-1) = -27
6)   (-34) x 1 = -34

–  การหารจำนวนใดๆ ด้วยหนึ่งจะได้ผลหารเท่ากับจำนวนนั้นเสมอ

เช่น 45 ÷ 1 = 45

หรือ  \frac{45}{1}  = 45

สมบัติของศูนย์

–  การบวกจำนวนใดๆ ด้วยศูนย์ หรือการบวกศูนย์ด้วยจำนวนใดๆ จะได้ผลบวก เท่ากับจำนวนนั้นเสมอ

เช่น 87 + 0 = 87

หรือ  0 + 87  = 87

ตัวอย่างที่ 7  จงหาผลบวกต่อไปนี้
1)  12 + 0 = 12
2)  0 + (-23) = -23
3)  (-27) + 0 = -27
4)  0 + 0 = 0

–  การคูณจำนวนใดๆ ด้วยศูนย์ หรือการคูณศูนย์ด้วยจำนวนใดๆ จะได้ผลคูณเท่ากับจำนวนศูนย์ (ศูนย์คูณอะไรก็ได้ศูนย์)

เช่น 235 x 0 = 0

หรือ  0 x 235  = 0

ตัวอย่างที่ 8 จงหาผลคูณต่อไปนี้
1)  12 X 0 = 0
2)  0 x (-23) = 0
3)  (-27) × 0 = 0
4)  0 x 0 = 0

–  การหารศูนย์ด้วยจำนวนใดๆ ที่ไม่ใช่ศูนย์ จะได้ผลหารเท่ากับศูนย์

เช่น 0 ÷ 95 = 0

หรือ \frac{0}{95}  = 45

ตัวอย่างที่ 9 จงหาผลหารต่อไปนี้
1)  0 ÷ 23 = 0
2)  0 ÷ (-23) = 0

–  ถ้าผลคูณของสองจำนวนใดเท่ากับศูนย์ จำนวนใดจำนวนหนึ่งอย่างน้อยหนึ่งจำนวนต้องเท่ากับศูนย์

เช่น a x b = 0

จะได้ว่า a  = 0 หรือ b = 0

ตัวอย่างเพิ่มเติม

ตัวอย่างที่ 10 จงหาผลคูณของ (-5)(6)(-2)
วิธีทำ (-5)(6)(-2) = [(-5)x6] x (-2)
                          =(-30) x (-2)
                          = 60                                                                                                                                                                        ดังนั้น  (-5)(6)(-2) = 60

ตัวอย่างที่ 11 จงหาผลคูณของ 999 X 5
วิธีทำ 999 x 5 = (1000 – 1) x 5
                       = [1000 + (-1)] x 5
                       = (1000 x 5)+[(-1) x 5]
                       = 5000 + (-5)
                        = 4,995
ดังนั้น  999 x 5 = 4,995

จากตัวอย่างทั้งหมด น้องๆจะเห็นว่ามีสมบัติการบวกและการคูณ แต่จะไม่มีสมบัติการลบและการหาร เพราะว่า การลบจำนวนเต็มก็คือ การบวกด้วยจำนวนเต็มลบ ซึ่งเราจะเรียกว่าสมบัติการบวก ส่วนการหารจำนวนเต็มคือ การนำเศษส่วนมาคูณ เราเรียกว่าสมบัติการคูณ

เมื่อน้องได้เรียนรู้เรื่อง สมบัติของจำนวนเต็ม ซึ่งสมบัติเหล่านี้จะนำมาใช้ในการบวก ลบ คูณ และหาร จำนวนเต็ม ซึ่งน้องๆจะต้องฝึกทำโจทย์อย่างสมำ่เสมอ จึงจะทำให้น้องๆสามารถคำนวณค่าต่างๆได้อย่างรวดเร็วและเป็นระบบ

คลิปวิดีโอ สมบัติของจำนวนเต็ม

        คลิปวิดีโอนี้ได้รวบรวมวิธี สมบัติของจำนวนเต็ม  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย สมบัติของจำนวนเต็ม และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ Auxiliary Verb: can, can’t

การใช้ Auxiliary Verb: can, can’t  บทนำแสนแซ่บ สวัสดีครับพ่อแม่พี่น้องสุดปังทุกท่าน วันนี้เรามาคุยกันเรื่องของคำกริยาช่วยที่ทำให้เรารู้ว่าคนนั้น ๆ สิ่งนั้น หรืออันนั้นมีความสามารถในการทำอะไรได้บ้างกันดีกว่า  ในภาษาไทยเอง เวลาเราจะอธิบายว่าเรามีความสามารถอะไรเราก็มักจะพูดว่า “เรา… ทำได้” หรือ “เราสามารถ….ทำได้” โดยภาษาอังกฤษสุดที่รักของเราเองก็มีอะไรแบบนั้นเหมือนกัน โดยเค้าใช้คำว่า Can มาช่วย โดยเราจะเรียกคำกริยาช่วยเหลือนี้ว่า Auxiliary verb หรือ

NokAcademy_Finite and Non- Finite Verb

Finite and Non- Finite Verb

Hi guys! สวัสดีค่ะนักเรียนชั้นม.6 ทุกคน วันนี้ครูจะพาไปทบทวนการใช้ “Finite and Non- Finite Verb” ในภาษาอังกฤษกันจร้า ถ้าพร้อมแล้วก็ไปลุยกันโลดจร้า   คำเตือน: การเรียนเรื่องนี้จะทำให้นักเรียนมึนงงได้หากว่าพื้นฐานเรื่อง Part of speech, Subject , Tense, Voice และ Mood ของเราไม่แน่น

Three-word Phrasal Verbs

Three-word Phrasal verbs

Hi guys! สวัสดีค่ะนักเรียนชั้นม.5 ที่น่ารักทุกคนวันนี้ครูมีกริยาวลีที่ใช้บ่อยแบบ 3 คำ หรือ Three-word Phrasal Verbs มาฝากกันจ้า ด้านล่างเลยน๊า ขอให้ท่องศัพท์ให้สนุกจ้า ตารางคำศัพท์Three-word Phrasal Verbs ต้องรู้   ask somebody out ชวนออกเดท/ชวนออกไปข้างนอก add up to something ทำให้สมน้ำสมเนื้อ/ทำให้เท่ากัน back something up

การหารเลขยกกำลัง

การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก บทความนี้ ได้รวบรวมตัวอย่าง การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งทำได้โดยการใช้สมบัติการหารของเลขยกกำลัง ก่อนจะเรียนรู้ ตัวอย่างการหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก น้องๆจำเป็นต้องมีความรู้ในเรื่อง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ⇐⇐ สมบัติของการหารเลขยกกำลัง  am ÷ an  = am – n     (ถ้าเลขยกกำลังฐานเหมือนกันหารกัน ให้นำเลขชี้กำลังมาลบกัน)

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1