สมบัติของการเท่ากัน

สมบัติของการเท่ากัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

          การหาคำตอบของสมการนั้น ต้องใช้สมบัติการเท่ากันมาช่วยในการหาคำตอบ จะรวดเร็วกว่าการแทนค่าตัวแปรในสมการซึ่งสมบัติการเท่ากันที่ใช้ในการแก้สมการได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ เรามาทำความรู้จักสมบัติเหล่านี้กันค่ะ

สมบัติสมมาตร

ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำนวนจริงใด ๆ                                        อาศัยสมบัติสมมาตรในการเขียนสมการแสดงความเท่ากันของจำนวนได้ 2 แบบ ดังตัวอย่างต่อไปนี้                        1.   a = 2 หรือ 2 = a
2.   a + b = c หรือ c = a + b
3.  -8x =-2 หรือ -2 = -8x
4.  4x + 1 = x – 2 หรือ x – 2 = 4x + 1
5.  x = y หรือ y = x                                                                                      

สมบัติถ่ายทอด

ถ้า a = b และ b = c แล้ว a = c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ
อาศัยสมบัติการถ่ายทอดในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.   ถ้า m = n และ n = 8 แล้วจะสรุปได้ว่า m = 8
2.   ถ้า x = 9 + 5 และ 9 + 5 = 14 แล้วจะสรุปได้ว่า x = 14
3.   ถ้า x = -7y และ -7y = 1.5 แล้วจะสรุปได้ว่า x = 1.5
4.   ถ้า y = 3x + 2 และ 3x + 2 = 5 แล้วจะสรุปได้ว่า y = 5
5.   ถ้า Z = p x N และ p x N = k แล้วจะสรุปได้ว่า Z = k

สมบัติการบวก

ถ้ามีจำนวนสองจำนวนที่เท่ากันอยู่แล้วเมื่อบวกจำนวนทั้งสองด้วยจำนวนที่เท่ากันแล้วผลลัพธ์จะเท่ากัน 

ถ้า a = b แล้ว a + c = b + c  เมื่อ a, b และ c แทนจำนวนจริงใด ๆ                                      

อาศัยสมบัติการบวกในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.  ถ้า 5 x 2 = 10 แล้ว (5×2) + (-3) = 10 + (-3)
2.  ถ้า a = 8 แล้ว a + 2 = 8 + 2
3.  ถ้า x + 3 = 12 แล้ว (x + 3) + (-3) = 12 + (-3)
4.  ถ้า m = n แล้ว m + p = n + p เมื่อ p แทนจำนวนจริงใด ๆ
5.  ถ้า x + 0.5 = 9 แล้ว (x + 0.5) + (-1) = 9 + (-1)

จำนวนที่นำมาบวกกับแต่ละจำนวนที่เท่ากันนั้น  อาจจะเป็นจำนวนบวกหรือจำนวนลบก็ได้ ในกรณีที่บวกด้วยจำนวนลบมีความหมายเหมือนกับนำจำนวนลบออกจากจำนวนทั้งสองข้างของสมการ คือ   

ถ้า a = b แล้ว a +(- c) = b +(- c) หรือ a – c = b – c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ 

นั่นคือ ถ้า a = b แล้ว a – c = b – c  เมื่อ a, b และ c แทนจำนวนจริงใดๆ

สมบัติการคูณ

ถ้ามีจำนวนสองจำนวนที่เท่ากัน เมื่อนำจำนวนอีกจำนวนหนึ่งมาคูณจำนวนทั้งสองนั้นแล้วผลลัพธ์จะเท่ากัน       

ถ้า a = b แล้ว ca = cb เมื่อ a, b และ c แทนจำนวนจริงใด ๆ                                                 

อาศัยสมบัติการคูณในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.  ถ้า x = y แล้ว 5x = 5y
2.  ถ้า m + 2 = 3n แล้ว 4(m + 2) = 4(3n)
3.  ถ้า -8x = 16 แล้ว (-8x)(5) = 16(5)
4.  ถ้า z = t แล้ว -3z = -3t
5.  ถ้า a = 2c แล้ว a(-4) = 2c(-4)
จำนวนที่นำมาคูณกับจำนวนสองจำนวนที่เท่ากันนั้น อาจจะเป็นจำนวนเต็มหรือเป็นเศษส่วนก็ได้ เช่น

ถ้า x = y  แล้ว  \frac{1}{4}x=\frac{1}{4}y  หรือ  \frac{x}{4}=\frac{y}{4}

และถ้า a = b, c ≠ 0  แล้ว \frac{1}{c}\times a=\frac{1}{c}\times b   หรือ \frac{a}{c}\times \frac{b}{c}

นั่นคือ ถ้า a = b แล้ว \frac{a}{c}=\frac{b}{c}  เมื่อ a,b และ c แทนจำนวนจริงใด ๆ ที่ c ≠ 0

ฝึกทำโจทย์

ให้บอกสมบัติของการเท่ากันในการแก้สมการต่อไปนี้

         1)  ถ้า x = 5  แล้ว  5  = x

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติสมมาตร

         2)  ถ้า 4x = 12 แล้ว 12 = 4x

      สมบัติของการเท่ากันที่ใช้  คือ สมบัติสมมาตร

         3)  ถ้า  x = 4a และ 4a  = 8  แล้ว x = 8     

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         4)  ถ้า x – 9 = 13 แล้ว  x – 9 + 8  = 13 + 8

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการบวก

         5)  ถ้า 3x + 5  = b และ  b  = 20  แล้ว 3x + 5  = 20        

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         6)  ถ้า  x + 1  = 6  แล้ว 2(x + 1)  = 2(6)

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการคูณ

         7)  ถ้า  6x – 2  = 8  แล้ว  6x – 2 + 2  = 8 + 2

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการบวก

         8)  ถ้า  5 (x – 6)  = y + 2 และ y + 2  = 25  แล้ว  5 (x – 6)  = 25

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         9)  ถ้า  \frac{4x+10}{5}=\frac{x-6}{3}   แล้ว  \frac{x-6}{3}=\frac{4x+10}{5}          

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติสมมาตร

         10)  ถ้า  7x = 49  แล้ว 7x \times \frac{1}{7}  = 49 \times \frac{1}{7}

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการคูณ

สรุป สมบัติของการเท่ากัน

สมบัติสมมาตร : ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำานวุ่นจริงใด ๆ

สมบัติถ่ายทอด : ถ้า a = b และ b = c แล้ว a = c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ

สมบัติการบวก : ถ้า a = b แล้ว a + c = b + c  เมื่อ a, b และ c แทนจำนวนจริงใด ๆ

สมบัติการคูณ : ถ้า a = b แล้ว ca = cb เมื่อ a, b และ c แทนจำนวนจริงใด ๆ 

เมื่อน้องๆเรียนรู้เรื่อง สมบัติของการเท่ากัน ทำให้สามารถนำความรู้ที่ได้ไปใช้ในการหาคำตอบของสมการ ซึ่งสามารถนำ สมบัติการเท่ากันมาใช้ในการแก้สมการ ได้รวดเร็วยิ่งขึ้น  ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การแก้สมการเชิงเส้นตัวแปรเดียว ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และแก้สมการได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ สมบัติของการเท่ากัน

        คลิปวิดีโอนี้ได้รวบรวม สมบัติของการเท่ากัน ซึ่งประกอบด้วย สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

หลักการของอัตราส่วนที่เท่ากัน

หลักการของอัตราส่วนที่เท่ากัน

ในบทความนี้เราจะได้เรียนรู้วิธีการในการหาค่าตัวแปรในการใช้สัดส่วน สามารถมารถนำไปประยุกต์ใช้กับการแก้โจทย์ปัญหาในชีวิตจริงได้ พิจารณาสิ่งที่ต้องการแสดงการเปรียบเทียบโดยการเขียนเป็นอัตราส่วนสองอัตราส่วนอย่างเป็นลำดับและหาค่าของตัวแปรได้

การใช้ Auxiliary Verb: can, can’t

การใช้ Auxiliary Verb: can, can’t  บทนำแสนแซ่บ สวัสดีครับพ่อแม่พี่น้องสุดปังทุกท่าน วันนี้เรามาคุยกันเรื่องของคำกริยาช่วยที่ทำให้เรารู้ว่าคนนั้น ๆ สิ่งนั้น หรืออันนั้นมีความสามารถในการทำอะไรได้บ้างกันดีกว่า  ในภาษาไทยเอง เวลาเราจะอธิบายว่าเรามีความสามารถอะไรเราก็มักจะพูดว่า “เรา… ทำได้” หรือ “เราสามารถ….ทำได้” โดยภาษาอังกฤษสุดที่รักของเราเองก็มีอะไรแบบนั้นเหมือนกัน โดยเค้าใช้คำว่า Can มาช่วย โดยเราจะเรียกคำกริยาช่วยเหลือนี้ว่า Auxiliary verb หรือ

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ จัดรูปใหม่ ได้เป็น (อ่านว่าล็อก x ฐาน

who what where

Who What Where กับ Verb to be

สวัสดีน้องๆ ม. 2 ทุกๆ คนนะครับ วันนี้เรามาทำความเข้าใจเกี่ยวกับการใช้ Who/What/Where ร่วมกับ Verb to be กันครับ ไปดูกันเลย

NokAcademy_ ม.5 M6 Gerund

Gerund พร้อมแนวข้อสอบ ม.6

  สวัสดีค่ะนักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” กันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม นั่นเองจร้า

เส้นตรง

เส้นตรง

เส้นตรง เส้นตรง มีสมการรูปแบบทั่วไปคือ Ax + By + C = 0 และสมการรูปแบบมาตรฐานของเส้นตรงจะเขียนอยู่ในรูป y = mx + C ซึ่งจะอยู่ในหัวข้อ “สมการเส้นตรง” เส้นตรงหนึ่งเส้นประกอบไปด้วยจุดหลายจุด ซึ่งจุดเหล่านี้จะทำให้เราสามารถหาความชันได้ และเมื่อเราทราบความชันก็จะสามารถหาสมการเส้นตรงได้นั่นเอง ความชันของเส้นตรง ความชันของเส้นตรง ส่วนใหญ่นิยมใช้ m

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1