สมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สมการเชิงเส้นตัวแปรเดียว

สมการ คือ ประโยคสัญลักษณ์ที่กล่าวถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  “ = ”  บอกความสัมพันธ์ระหว่างจำนวน อาจมีตัวแปร หรือไม่มีตัวแปร เช่น

สมการที่ไม่มีตัวแปร                                   สมการที่มีตัวแปร

5 + 4 = 9                                                         2x + 2 = 8

10 – 2 = 8                                                         y – 9 = -6

สมการเชิงเส้นตัวแปรเดียว คือ สมการที่มีตัวแปรเพียงตัวแปรเดียว และเลขชี้กำลังของตัวแปรเป็นหนึ่ง มีรูปทั่วไปเป็น   ax + b = 0 เมื่อ ≠ 0  และ  a, b  เป็นค่าคงตัว ที่มี x เป็นตัวแปร เช่น 2x + 4 = 0

คำตอบของสมการ

คำตอบของสมการ คือ จำนวนที่แทนตัวแปรในสมการแล้วทำให้สมการเป็นจริง

ตัวอย่างที่ 1  จงตรวจสอบว่าจำนวนใน  [  ] เป็นคำตอบของสมการที่กำหนดให้หรือไม่

  • -8 +  t  =  10         [8]

เมื่อแทน t ด้วย 8 ในสมการ  -8 +  t  =  10

จะได้  -8 +  8  =  10 ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 8 ไม่เป็นคำตอบของสมการ -8 +  t  =  10

  • x + 4 = 12           [8]

เมื่อแทน x ด้วย 8 ในสมการ  x + 4 = 12

จะได้  8 + 4 = 12  ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น 8 เป็นคำตอบของสมการ  x + 4 = 12

  • 5 +  18  =  y         [0]

เมื่อแทน y ด้วย 0 ในสมการ  5 +  18  =  y

จะได้  5 +  18  =  0  ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 0 ไม่เป็นคำตอบของสมการ  5 +  18  =  y

  • 2a =  2                 [0]

เมื่อแทน a ด้วย 0 ในสมการ  2a =  2

จะได้  2(0) =  2   ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 0 ไม่เป็นคำตอบของสมการ  2a =  2

  • 7 –  x = 0             [6]

เมื่อแทน x ด้วย 0 ในสมการ   7 –  x = 0

จะได้  7 –  6 = 0  ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 6 ไม่เป็นคำตอบของสมการ 7 –  x = 0

  • 3 × d = -18        [-6]

เมื่อแทน d ด้วย 8 ในสมการ  3 × d = -18

จะได้  3 × (-6) = -18   ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น -6 เป็นคำตอบของสมการ   3 × d = -18

  • a ÷ 6  =  -6        [-2]

เมื่อแทน a ด้วย 0 ในสมการ  a ÷ 6  =  -6

จะได้  (-2) ÷ 6  =  -6   ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น -2 ไม่เป็นคำตอบของสมการ  a ÷ 6  =  -6

  • 5y = 50                [10]

เมื่อแทน y ด้วย 10 ในสมการ 5y = 50

จะได้  5(10) = 50  ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น 10 เป็นคำตอบของสมการ  5y = 50

  • -11 +  a  =  1           [10]

เมื่อแทน a ด้วย 10 ในสมการ  -11 +  a  =  1

จะได้  -11 +  10  =  1  ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 10 ไม่เป็นคำตอบของสมการ -11 +  a  =  1

  • \frac{a}{3} =   4                   [12]

เมื่อแทน a ด้วย 12 ในสมการ  \frac{a}{3} =   4  

จะได้  \frac{12}{3} =   4  ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น 12 เป็นคำตอบของสมการ  \frac{a}{3} =   4  

การหาคำตอบของสมการ โดยวิธีลองแทนค่าตัวแปร

ตัวอย่างที่ 2  จงหาคำตอบของสมการต่อไปนี้   โดยวิธีลองแทนค่าตัวแปร

1)  2x = 8

วิธีทำ       เมื่อแทน  x  ด้วย  4 ใน  2x = 8

       จะได้ 2(4) = 8 เป็นสมการที่เป็นจริง

                 ดังนั้น  คำตอบของสมการ  คือ 4

2)  \frac{x}{2} = 16

วิธีทำ       เมื่อแทน  x  ด้วย  32 ใน  \frac{x}{2} = 16

       จะได้  \frac{32}{2} = 16 เป็นสมการที่เป็นจริง

       ดังนั้น  คำตอบของสมการ คือ 32

3)  p + 3 = 16

วิธีทำ       เมื่อแทน  p  ด้วย 13 ใน p + 3 = 16

      จะได้ 13 + 3 = 16  เป็นสมการที่เป็นจริง

                 ดังนั้น  คำตอบของสมการ   คือ 13

4)  y – 18 = y

วิธีทำ       เนื่องจากไม่มีจำนวนจริงใดๆแทน y  ใน  y – 18 = y  แล้วได้สมการเป็นจริง

      ดังนั้น  ไม่มีจำนวนจริงใดเป็นคำตอบของสมการ  y – 18 = y

5)  11.2 + n = n + 11.2

วิธีทำ      เนื่องจาก เมื่อแทน n ด้วยจำนวนจริงใดๆ ใน 11.2 + n = n + 11.2 แล้วจะได้สมการเป็นจริงเสมอ

     ดังนั้น  คำตอบของสมการ 11.2 + n = n + 11.2 คือ จำนวนจริงทุกจำนวน

ประโยคภาษาและประโยคสัญลักษณ์

ประโยคภาษา                                                            ประโยคสัญลักษณ์

          สองบวกแปดเท่ากับสิบ                                                  2 + 8 = 10

สามเท่าของสามเท่ากับเก้า                                            3(3) = 9

จำนวนจำนวนหนึ่งบวกกับสิบเท่ากับห้าสิบ                     x + 10 = 50  เมื่อ x แทน จำนวนจำนวนหนึ่ง

ตัวอย่างที่ 3  จงเขียนประโยคสัญลักษณ์แทนประโยคภาษาต่อไปนี้

1)  ผลบวกของสองเท่าของจำนวนจำนวนหนึ่งกับสามเท่าของจำนวนจำนวนนั้นเท่ากับสี่สิบห้า

ตอบ   2x + 3x = 45

2)  สองเท่าของผลบวกของจำนวนจำนวนหนึ่งกับแปดเท่ากับยี่สิบ

ตอบ   2(x + 8) =20

3)  เศษสองส่วนสามของจำนวนจำนวนหนึ่งมากกว่าห้าอยู่เจ็ด

ตอบ   \frac{2}{3}x – 5 = 7

ตัวอย่างที่ 4  จงเปลี่ยนประโยคสัญลักษณ์ต่อไปนี้เป็นประโยคภาษา

1)   \frac{1}{2}x  = 6

ตอบ  เศษหนึ่งส่วนสองของจำนวนจำนวนหนึ่งเท่ากับหก

2) 5x + 6x = 55

ตอบ  ผลบวกของห้าเท่าของจำนวนจำนวนหนึ่งกับหกเท่าของจำนวนจำนวนนั้นเท่ากับห้าสิบห้า

3)  5(x + 9) = 40

ตอบ  ห้าเท่าของผลบวกของจำนวนจำนวนหนึ่งกับเก้าเท่ากับสี่สิบ

ในการหาคำตอบของ สมการเชิงเส้นตัวแปรเดียว โดยใช้วิธีการแทนค่านั้น เหมาะสมกับโจทย์ที่ไม่มีความซับซ้อนมากนัก หากโจทย์มีความซับซ้อน จะทำให้หาคำตอบได้ยากขึ้น ต้องใช้วิธีอื่นในการหาคำตอบของสมการ ซึ่งวิธีนั้นจะต้องอาศัยสมบัติการเท่ากันเข้ามาช่วยในการแก้สมการ น้องๆสามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ สมบัติของการเท่ากัน ⇐⇐

วิดีโอ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โคลงสี่สุภาพ เจาะลึกคำประพันธ์ที่กวีนิยมแต่งมากที่สุด

  โคลงสี่สุภาพ เป็นคำประพันธ์ประเภทหนึ่งของบทร้อยกรองที่กวีนิยมนำไปใช้กันมากมาย บทเรียนวันนี้ จะพาน้อง ๆ ไปเรียนรู้เรื่องของโคลงสี่สุภาพ ว่ามีฉันทลักษณ์และลักษณะคำประพันธ์อย่างไร ทำไมถึงได้รับความนิยมในหมู่กวี ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   โคลงสี่สุภาพคืออะไร     โคลง เป็นคำประพันธ์ที่มีการเรียบเรียงถ้อยคำเป็นคณะ มีกำหนดเอกโทและสัมผัส ส่วนสุภาพ หรือเสาวภาพ หมายถึงคำที่ไม่มีวรรณยุกต์ โคลงสี่สุภาพปรากฏในวรรณคดีไทยตั้งแต่สมัยอยุธยา โดยโคลงที่มีชื่อเสียงและได้รับการยกย่องว่าแต่งดี ยอดเยี่ยม

สมบัติการคูณจำนวนจริง

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย การให้เหตุผลแบบอุปนัย คือ การนำประสบการณ์มาสรุปผล เช่น เราไปซื้อผลไม้แล้วเราชิมผลไม้ 2-3 ลูก ปรากฏว่า มีรสหวาน เราเลยสรุปว่าผลไม้ทั้งกองนั้นหวาน เป็นต้น ซึ่งการสรุปผลอาจจะเป็นจริงหรือเท็จก็ได้ อาจจะขึ้นอยู่กับประสบการณ์ของผู้สรุป ดังนั้น ผลสรุปไม่จำเป็นต้องเหมือนกัน ตัวอย่างเช่น เหตุ เมื่อวานแป้งตั้งใจเรียน วันนี้แป้งตั้วใจเรียน ผลสรุป  พรุ่งนี้แป้งจะตั้งใจเรียน การให้เหตุผลแบบนี้ เหมือนเป็นการคาดคะเนเหตุการณ์ที่จะเกิดขึ้นต่อไป ซึ่งการคาดคะเนนี้อาจจะจริงหรือเท็จก็ได้

ประโยคในภาษาไทย

ทริคสังเกต ประโยคในภาษาไทย รู้ไว้ไม่สับสน

  น้อง ๆ หลายคนคงจะเคยสับสนและมีข้อสงสัยเกี่ยวกับประโยคในภาษาไทยกันมาไม่มากก็น้อย ทำไมอยู่ดี ๆ เราถึงไม่เข้าใจประโยคภาษาไทยที่พูดกันอยู่ทุกวันไปได้นะ? แต่ไม่ต้องกังวลไปนะคะ บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ กลับไปทบทวนเกี่ยวกับเรื่องประโยคอีกครั้ง พร้อมเรียนรู้เคล็ดลับการสังเกตประโยคง่าย ๆ จะเป็นอย่างไร ไปดูพร้อมกันเลยค่ะ   ความหมายของประโยค   ประโยค เป็นหน่วยทางภาษาที่เกิดจากการนำคำหลาย ๆ คำ หรือกลุ่มคำ มาเรียงต่อกันอย่างเป็นระบบ มีความสัมพันธ์กัน

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof  จากรูป

Comparison of Adjectives การเปรียบเทียบคำคุณศัพท์ในภาษาอังกฤษ

  สวัสดีค่ะนักเรียนชั้นป. 5 ที่น่ารักทุกคน ยินดีต้อนรับทุกคนเข้าสู่บทเรียนเรื่องคำคุณศัพท์กันนะคะ วันนี้ครูได้ สรุปเรื่อง Comparison of Adjectives หรือ การเปรียบเทียบคำคุณศัพท์ในภาษาอังกฤษ มาฝาก ไปลุยกันเลย ความหมาย Comparison of Adjectives คือ การเปรียบเทียบคำคุณศัพท์ ที่ใช้ในการเปรียบเทียบคน สัตว์ สิ่งของ หรือ อื่นๆ

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1