การบวก ลบ คูณ หารจำนวนเต็ม

ารบวก-ลบ-คูณ-หารจำนวนเต็ม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง การบวก ลบ คูณ หารจำนวนเต็ม มากยิ่งขึ้น ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลายและอธิบายไว้อย่างละเอียด โดยก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง จำนวนตรงข้าม และ ค่าสัมบูรณ์ เพื่อใช้ในการบวก ลบ จำนวนเต็ม ซึ่งมีวิธีการดังตัวอย่างต่อไปนี้

การบวกจำนวนเต็ม

การบวกจำนวนเต็มบวก โดยใช้ค่าสัมบูรณ์ ให้น้องๆทบทวนการหาค่าสัมบูรณ์ ดังนี้

|-12|=   12

|4|=   4

เนื่องจาก   ค่าสัมบูรณ์ของจำนวนเต็มบวก และ จำนวนเต็มลบ ถอดค่าสมบูรณ์ได้ จำนวนเต็มบวก เสมอ               

การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก          

ตัวอย่างที่ 1   จงหาผลบวกของจำนวนต่อไปนี้

1)   3 + 4

วิธีทำ      3 + 4 = | 3 | + | 4 |

      = 3 + 4

      = 7

ตอบ   7

2)   3 + 9

วิธีทำ      3 + 9  = | 3 | + | 9 |

       = 3 + 9

       = 12

ตอบ  12

        การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก ทำได้โดยการนำค่าสัมบูรณ์มาบวกกัน  ผลลัพธ์ที่ได้เป็นจำนวนเต็มบวก

การบวกจำนวนเต็มลบด้วยจำนวนเต็มลบ

ตัวอย่างที่ 2   จงหาผลบวกของจำนวนต่อไปนี้  

1)   (-3) + (-4)  

วิธีทำ (-3) + (-4) = -7

ตอบ  -7

2)  (-4) + (-1)

วิธีทำ  (-4) + (-1)  =  -5

ตอบ   -5

          การบวกจำนวนเต็มลบกับจำนวนเต็มลบ  ผลลัพธ์ที่ได้เป็นจำนวนเต็มลบ

การบวกจำนวนเต็มบวกด้วยจำนวนเต็มลบ 

ตัวอย่างที่ 3  จงหาผลบวกของจำนวนต่อไปนี้

1)   6 + (-4)  

วิธีทำ   6 + (-4) = 2

ตอบ   2

2)   2 + (-6)

วิธีทำ  2 + (-6) = -4

ตอบ   -4

3)   3 + (-2)

วิธีทำ  3 + (-2) = 1

ตอบ   1

4)   7 + (-5)

วิธีทำ  7 + (-5) = 2

ตอบ   2

การบวกจำนวนเต็มลบด้วยจำนวนเต็มบวก 

ตัวอย่างที่ 4  จงหาผลบวกของจำนวนต่อไปนี้

1)   (-2) + 5

วิธีทำ   (-2) + 5 = 3

ตอบ   3

2)  (-5) + 3

วิธีทำ   (-5) + 3 = -2

ตอบ   -2

3)  (-7) + 5

วิธีทำ   (-7) + 5 = -2

ตอบ   -2

4)  (-4) + 10

วิธีทำ   (-4) + 10 = 6

ตอบ   6

          การบวกจำนวนเต็มบวกกับจำนวนเต็มลบ ทำได้โดยการนำจำนวนที่มีค่าสัมบูรณ์มากกว่าเป็นตัวตั้ง แล้วลบด้วยจำนวนที่มีค่าสัมบูรณ์น้อยกว่า ผลลัพธ์ที่ได้เป็นจำนวนเต็มบวกหรือจำนวนเต็มลบตามจำนวนที่มีค่าสัมบูรณ์มากกว่า

การลบจำนวนเต็ม

การลบจำนวนเต็มคือการบวกด้วยจำนวนตรงข้าม เช่น จำนวนตรงข้ามของ 2 คือ -2 , จำนวนตรงข้ามของ 8 คือ -8

ตัวอย่างที่ 5  จงหาผลลบของจำนวนต่อไปนี้

1)   7 – 12

วิธีทำ   7 – 12  =  7 + (-12)

                      =  -5

ตอบ       -5

2)  (-8) – 2

วิธีทำ    (-8) – 2  =  (-8) + (-2)

                         =  -10    

ตอบ       -10

3)   3 – (-5)

วิธีทำ    3 – (-5)       =  3 + 5

                               =  8

ตอบ       8

4)   (-3) – (-8)

วิธีทำ      (-3) – (-8)   =   (-3) + 8

                                =   5    

ตอบ       5

5)   8 – 5

วิธีทำ    8 – 5  =  8 + (-5)

                     =     3

ตอบ       3

6)   (-9) – 4

วิธีทำ        (-9) – 4   =  (-9) + (-4)

                              =  -13    

ตอบ       -13

7)   6 – (-4)

วิธีทำ    6 – (-4)       =  6 + 4

                               =  10

ตอบ       10

8)   (-8) – (-2)

วิธีทำ        (-8) – (-2)   =   (-8) + 2

                                  =   -6    

ตอบ       -6

9)   (-8) – 4

วิธีทำ   (-8) – 4  =  (-8) + (-4)

                         =  -12

ตอบ      -12

10)   (-9) – (-3)

วิธีทำ   (-9) – (-3)  =  (-9) + 3

                             =  -6

ตอบ      -6

การคูณจำนวนเต็ม

การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก

ตัวอย่างที่ 6  จงหาผลคูณของจำนวนเต็มต่อไปนี้

1)   3 x 2  

วิธีทำ        3 x 2  =   | 3 | x | 2 |

                         =   3 x 2

                         =   6

ตอบ     6

2)   4 x 7  

วิธีทำ        4 x 7  =   | 4 | x | 7 |

                         =   4 x 7

                         =   28

ตอบ     28

3)   4 x 10

วิธีทำ       4 x 10  =   | 4 | x | 10 |

                         =   4 x 10

                         =   40

ตอบ     40

4)   6 x 9  

วิธีทำ  6 x 9  =   | 6 | x | 9 |

                         =   6 x 9

                         =   54

ตอบ     54

       การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก  คำตอบที่ได้เป็นจำนวนเต็มบวกที่มี  ค่าสัมบูรณ์เท่ากับผลคูณของค่าสัมบูรณ์ของสองจำนวนนั้น (บวกคูณบวกได้บวก)

การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ

ตัวอย่างที่ 7  จงหาผลคูณของจำนวนเต็มต่อไปนี้

1)   (-2)(-5) = 0

วิธีทำ   (-2)(-5)  =   | -2 | x | -5 |

                         =   2 x 5

                         =   10

ตอบ     10

(2)  (-7)(-3) = 0

วิธีทำ       (-7)(-3)   =  | -7 | x | -3 |

                              =   7 x 3

                              =   21

ตอบ     21

       การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ คำตอบที่ได้เป็นจำนวนเต็มบวกที่มี  ค่าสัมบูรณ์เท่ากับผลคูณของค่าสัมบูรณ์ของสองจำนวนนั้น (ลบคูณลบได้บวก)

ตัวอย่างที่ 8  จงหาผลลัพธ์ของจำนวนต่อไปนี้

1)   [(-2)(4)](-9) 

วิธีทำ   [(-2)(4)](-9)  =  (-8) (-9)

                                =   72

ตอบ     72

2)    [ 5(-7)] 6 

วิธีทำ     [ 5(-7)]6   =  (-35) 6

                              =    -210

ตอบ     -210

3)   [ 2(-5)](-4) 

วิธีทำ     [ 2(-5)](-4)  =   (-10) (-4)

                                 =   40

ตอบ     40

4)   9[ (-5)(-4)]  

วิธีทำ   9[(-5)(-4)]   =  9 x 20

                               =   180

ตอบ     180

การหารจำนวนเต็ม

ตัวอย่างที่ 9  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   36 ÷ 6

หาจำนวนเต็มที่คูณกับ 6 แล้วได้ 36

เนื่องจาก 6 x 6 = 36 

ดังนั้นจำนวนที่ต้องการคือ 6

นั่นคือ 36 ÷ 6 = 6

2)   (-54) ÷ (-9)

หาจำนวนเต็มที่คูณกับ -9 แล้วได้ -54

เนื่องจาก (-9) x 6 = -54 

ดังนั้นจำนวนที่ต้องการคือ 6

นั่นคือ (-54) ÷ (-9) = 6

         การหารจำนวนเต็ม เมื่อตัวตั้งและตัวหารเป็นจำนวนเต็มบวกทั้งคู่ หรือจำนวนเต็มลบทั้งคู่ จะได้คำตอบเป็นจำนวนเต็มบวก (ลบหารด้วยลบ หรือ บวกหารด้วยบวก ได้บวกเสมอ)

ตัวอย่างที่ 10  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   72 ÷ (-9)

หาจำนวนเต็มที่คูณกับ -9 แล้วได้ 72

เนื่องจาก (-9) x (-8) = 72 

ดังนั้นจำนวนที่ต้องการคือ -8

นั่นคือ 72 ÷ (-9) = -8

2)   (-36) ÷ 6

หาจำนวนเต็มที่คูณกับ 6 แล้วได้ -36

เนื่องจาก 6 x (-6) = -36 

ดังนั้นจำนวนที่ต้องการคือ -6

นั่นคือ (-36) ÷ 6 = -6

         การหารจำนวนเต็ม เมื่อตัวตั้งและตัวหารตัวใดตัวหนึ่งเป็นจำนวนเต็มลบ โดยที่อีกตัวหนึ่งเป็นจำนวนเต็มบวก จะได้คำตอบเป็นจำนวนเต็มลบ (ลบหารด้วยบวก หรือ บวกหารด้วยลบ ได้ลบเสมอ)

ตัวอย่างที่ 11  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   14 ÷ (-7) = -2    (หาจำนวนที่คูณกับ -7 แล้วได้ 14 คือ -2)

2)   12 ÷ 3 = 4    (หาจำนวนที่คูณกับ 3 แล้วได้ 12 คือ 4)

3)   (-21) ÷ 3 = -7    (หาจำนวนที่คูณกับ 3 แล้วได้ -21 คือ -7)

4)   (-35) ÷ (-5) = 7    (หาจำนวนที่คูณกับ -5 แล้วได้ -35 คือ 7)

5)   40 ÷ 8 = 5    (หาจำนวนที่คูณกับ 8 แล้วได้ 40 คือ 5)

สรุป
  • การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก ได้เป็นจำนวนเต็มบวก
  • การบวกจำนวนเต็มลบกับจำนวนเต็มลบ ได้เป็นจำนวนเต็มลบ
  • การบวกจำนวนเต็มบวกกับจำนวนเต็มลบ ได้เป็นจำนวนเต็มบวกหรือจำนวนเต็มลบตามจำนวนที่มีค่าสัมบูรณ์มากกว่า    
  • การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก  ได้เป็นจำนวนเต็มบวก (บวกคูณบวกได้บวก)
  • การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ ได้เป็นจำนวนเต็มบวก (ลบคูณลบได้บวก)
  •  การหารจำนวนเต็ม ลบหารด้วยลบ ได้บวก หรือ บวกหารด้วยบวก ได้บวก
  • การหารจำนวนเต็ม ลบหารด้วยบวก ได้ลบ หรือ บวกหารด้วยลบ ได้ลบ

คลิปวิดีโอ การบวก ลบ คูณ หารจำนวนเต็ม

        คลิปวิดีโอนี้ได้รวบรวมวิธี การบวก ลบ คูณ หารจำนวนเต็ม ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ระยะห่างของเส้นตรง

ระยะห่างของเส้นตรง

ระยะห่างของเส้นตรง ระยะห่างของเส้นตรง มีทั้งระยะห่างระหว่างจุดกับเส้นตรง และระหว่างเส้นตรงสองเส้นที่ขนานกัน ซึ่งจากบทความเรื่องเส้นตรง น้องๆพอจะทราบแล้วว่าเส้นตรงสองเส้นที่ขนานกันความชันจะเท่ากัน ในบทความนี้น้องๆจะทราบวิธีการหาระยะห่างของเส้นตรงที่ขนานกันด้วยซึ่งสามารถประยุกต์ใช้ในการหาสมการเส้นตรงได้ด้วย ระยะห่างระหว่างเส้นตรงกับจุด จากรูปจะได้ว่า  โดยที่ A, B และ C เป็นค่าคงที่ และ A, B ไม่เป็นศูนย์พร้อมกัน ตัวอย่าง1  หาระยะห่างระหว่างจุด (1, 5) และเส้นตรง 2x

Life is Simple: ทำความรู้จัก Present Simple Tense

เรื่อง Tense (กาล) ในภาษาอังกฤษเป็นเรื่องที่สำคัญมากๆ อีกเรื่องหนึ่ง และ Tense ที่เป็นพื้นฐานสุดๆ และน้องๆ จะพบเจอบ่อยที่สุดก็คือ Present Simple นั่นเอง วันนี้เราจะมาปูพื้นฐานและทบทวนความรู้เรื่องนี้กันครับ

การวัดพื้นที่ ม.2

ในบทความนี้เราจะได้เรียนรู้มาตราต่างๆของหน่วยในระบบที่ใช้กันอย่างแพร่หลาย รวมทั้งสูตรต่างๆที่ใช้ในการหาพื้นที่ เพื่อให้เราได้นำไปใช้ได้อย่างถูกต้อง

Profile

การตั้งประโยคคำถามแบบมีกริยาช่วยนำหน้าและ Wh-questions

สวัสดีค่ะนักเรียนชั้นม.1 ทุกคน วันนี้ครูจะพาไปดู ความแตกต่างของ ประโยคคำถามที่มีกริยาช่วยนำหน้า กับ Wh-questions กันค่ะ พร้อมแล้วก็ไปลุยกันเลย มารู้จักกับกริยาช่วย   Helping verb หรือ Auxiliary verb กริยาช่วย หรือ ภาษาทางการเรียกว่า กริยานุเคราะห์  คือกริยาที่วางอยู่หน้ากริยาหลัก (Main verb) ในประโยค  ทำหน้าที่ช่วยกริยาอื่นให้มีความหมายตาม

เปรียบเทียบเศษส่วนและจำนวนคละฉบับเข้าใจง่ายและเห็นภาพ

บทความนี้จะพาน้องๆ มาทำความเข้าใจเกี่ยวกับเรื่องการเปรียบเทียบเศษส่วนและจำนวนคละ  เนื่องจากหลักการที่ใช้ในการเปรียบเทียบเศษส่วนนี้จะนำไปต่อยอดกับเรื่องต่อไปเช่นเรื่องการบวกและการลบเศษส่วน หลังจากอ่านบทความนี้จบสิ่งที่จะได้รับก็คือ หลักการเปรียบเทียบเศษส่วน วิธีเปรียบเทียบที่เห็นภาพและเข้าใจง่ายร่วมถึงเทคนิคที่จะช่วยให้น้อง ๆ สามารถเปรียบเทียบเศษส่วนได้เร็วยิ่งขึ้น

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1