จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ

สารบัญ

จำนวนเฉพาะและตัวประกอบเฉพาะ

บทความนี้จะทำให้น้องๆ รู้จัก จำนวนเฉพาะและตัวประกอบเฉพาะ  น้องๆหลายคนคุ้นเคยกับจำนวนเฉพาะมาบ้างแล้ว แต่น้องๆทราบหรือไม่ว่า ตัวประกอบเฉพาะคืออะไร ซึ่งน้องๆจะได้เรียนรู้จากตัวอย่างที่ได้รวบรวมไว้ในบทความนี้ โดยได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นประถมศึกษาปีที่ 6  ก่อนอื่นเรามาทำความเข้าใจกับความหมายของ ตัวประกอบ 

ตัวประกอบของจำนวนเต็มใด ๆ  คือ จำนวนที่หารจำนวนนั้นได้ลงตัว  ถ้าจำนวนที่ 2 หารได้ลงตัว เรียกว่า จำนวนคู่  ส่วนจำนวนที่ 2 หารไม่ลงตัว เรียกว่า จำนวนคี่

จากที่น้องๆ ได้ศึกษาความหมายของตัวประกอบเมื่อเข้าใจความหมายแล้ว ลำดับต่อไปให้หาจำนวนนับที่หาร 8, 12 และ 20 ลงตัว

จำนวนที่หาร  8     ได้ลงตัว   ได้แก่   1, 2, 4   และ 8

จำนวนที่หาร  12   ได้ลงตัว   ได้แก่   1, 2, 3, 4, 6 และ 12

จำนวนที่หาร  20   ได้ลงตัว   ได้แก่   1, 2, 4, 5, 10   และ 20

เราเรียก  1, 2, 4  และ 8 ว่า เป็นตัวประกอบของ 8

             1, 2, 3, 4, 6   และ 12  ว่า เป็นตัวประกอบของ 12

             1, 2, 4, 5, 10  และ 20  ว่า เป็นตัวประกอบของ 20

เมื่อรู้จักตัวประกอบแล้ว เราจะมาทำความรู้จักกับ จำนวนเฉพาะกันค่ะ 

จำนวนเฉพาะ

ตัวอย่างที่ 1  จงหาตัวประกอบทั้งหมดของจำนวนนับ 1 – 10

ตัวประกอบทั้งหมดของ  1   คือ   1

ตัวประกอบทั้งหมดของ  2   คือ   1, 2

ตัวประกอบทั้งหมดของ  3   คือ   1, 3

ตัวประกอบทั้งหมดของ  4   คือ   1, 2, 4

ตัวประกอบทั้งหมดของ  5   คือ   1, 5

ตัวประกอบทั้งหมดของ  6   คือ   1, 2, 3, 6

ตัวประกอบทั้งหมดของ  7   คือ   1, 7

ตัวประกอบทั้งหมดของ  8   คือ   1, 2, 4, 8

ตัวประกอบทั้งหมดของ  9   คือ   1, 3, 9

ตัวประกอบทั้งหมดของ  10 คือ   1, 2, 5, 10       

ดังนั้นจำนวนนับที่มีค่าอยู่ระหว่าง  1 – 10  ที่เป็นจำนวนเฉพาะได้แก่  2, 3, 5 และ   7

สรุปได้ว่า จำนวนเฉพาะ คือ จำนวนที่มากกว่า 1 ที่มีตัวประกอบสองตัว คือ 1 และตัวมันเอง 

ตัวอย่างที่ 2 จงพิจารณาจำนวนต่อไปนี้ว่าเป็นจำนวนเฉพาะหรือไม่ เพราะเหตุใด

       1)  2      2) 6      3) 11      4) 15      5)  19      6) 21      7) 31      8) 47      9) 87      10) 97

1)  2     เป็นจำนวนเฉพาะ        เพราะ  2      มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 2

2)  6     ไม่เป็นจำนวนเฉพาะ    เพราะ  6    มีตัวประกอบ   4 ตัว  ได้แก่   1 , 2, 3 และ 6

3)  11    เป็นจำนวนเฉพาะ       เพราะ  11    มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 11

4)  15    ไม่เป็นจำนวนเฉพาะ  เพราะ  15    มีตัวประกอบ   4 ตัว  ได้แก่   1, 3, 5 และ 15

5)  19    เป็นจำนวนเฉพาะ       เพราะ  19    มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 19

6)  21    ไม่เป็นจำนวนเฉพาะ   เพราะ  21  มีตัวประกอบ  4 ตัว  ได้แก่   1 , 3 ,7 และ 21

7)  31    เป็นจำนวนเฉพาะ        เพราะ  31   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 31

8)  47    เป็นจำนวนเฉพาะ         เพราะ  47   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 47

9)  87    เป็นจำนวนเฉพาะ        เพราะ  87   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 87

10) 97   เป็นจำนวนเฉพาะ        เพราะ  97   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 97

จากตัวอย่างข้างต้น ทำให้น้องๆ รู้จักจำนวนเฉพาะ ต่อไปเราจะมาทำความรู้จักกับ ตัวประกอบเฉพาะ กันค่ะ 

ตัวประกอบเฉพาะ

ตัวอย่างที่ 3  พิจารณาจำนวนต่อไปนี้ว่าเป็นจำนวนเฉพาะหรือไม่  เพราะเหตุใด

              1)  12                       2) 23                        3) 28                        4) 41

วิธีทำ         1)  12  ไม่เป็นจำนวนเฉพาะ  เพราะ  12  มีตัวประกอบ  6  ตัว ได้แก่  1, 2, 3, 6 และ 12               

2)  23  เป็นจำนวนเฉพาะ  เพราะ  23  มีตัวประกอบ  2  ตัว ได้แก่  1  และ  23   

3)  28  ไม่เป็นจำนวนเฉพาะ  เพราะ  28  มีตัวประกอบ  6  ตัว  ได้แก่   1, 2, 4, 7, 14 และ 28  

4)  31  เป็นจำนวนเฉพาะ  เพราะ  31  มีตัวประกอบ 2  ตัว ได้แก่  1  และ  31

ตัวอย่างที่ 4  จงหาตัวประกอบเฉพาะของจำนวนต่อไปนี้

              1)  8         2) 25         3) 54            

          1)   8  มีตัวประกอบทั้งหมด  ได้แก่   1, 2, 4, 8

   ตัวประกอบเฉพาะของ  8 คือ   2

          2)   25 มีตัวประกอบทั้งหมด  ได้แก่  1, 5 และ 25

     ตัวประกอบเฉพาะของ  25 คือ  5

          3)  54  มีตัวประกอบทั้งหมด  ได้แก่  1, 2, 3, 6, 9, 18, 27 และ 54       

    ตัวประกอบเฉพาะของ  54  คือ  2  และ  3                                               

สรุปได้ว่า ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะ 

ตัวอย่างที่ 5 จงหาตัวประกอบเฉพาะทั้งหมดของจำนวนต่อไปนี้

1)  24         2) 35         3) 40         4) 75         5) 80   

     1) 24       มีตัวประกอบ 8 จำนวน   คือ  1, 2, 3, 4, 6, 8, 12  และ 24

มีตัวประกอบเฉพาะ  2 จำนวน   คือ  2 และ 3

     2) 35      มีตัวประกอบ 4 จำนวน   คือ  1, 57 และ 35

มีตัวประกอบเฉพาะ  2 จำนวน   คือ  5 และ 7

     3) 40      มีตัวประกอบ 8  จำนวน  คือ  1, 2, 4, 5, 8, 10, 20  และ 40

มีตัวประกอบเฉพาะ  2 จำนวน คือ  2 และ 5

     4) 75      มีตัวประกอบ 6 จำนวน  คือ  1, 3, 5, 15, 25 และ 75

มีตัวประกอบเฉพาะ  2 จำนวน คือ  3 และ 5

     5) 80     มีตัวประกอบ 10 จำนวน  คือ  1, 2, 4, 5, 8, 10, 16, 20, 40  และ 24

มีตัวประกอบเฉพาะ  2 จำนวน คือ  2 และ 5

สรุป

ตัวประกอบ ของจำนวนนับใด ๆ  หมายถึง  จำนวนนับทุกจำนวนที่นำมาหารจำนวนนับนั้นได้ลงตัว

จำนวนเฉพาะ คือ  จำนวนนับที่มากกว่า 1 และมีตัวประกอบเพียงสองตัวคือ 1 และตัวมันเอง

ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะ

เมื่อน้องๆเรียนรู้เรื่อง จำนวนเฉพาะและตัวประกอบเฉพาะ จาก ตัวอย่าง หลายๆตัวอย่าง ทำให้รู้ความหมายอย่างชัดเจนว่า จำนวนเฉพาะคืออะไร  ตัวประกอบเฉพาะคืออะไร ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การแยกตัวประกอบ ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และแยกตัวประกอบได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ จำนวนเฉพาะและตัวประกอบเฉพาะ

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา จำนวนเฉพาะและตัวประกอบเฉพาะ ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Profile Linking Verbs

มาทำความรู้จักกับ Linking Verbs ให้มากขึ้น

สวัสดีค่ะนักเรียนม.1 ที่น่ารักทุกคน วันนี้เราจะไปรู้จักกับ Linking Verbs ให้มากขึ้น แต่ก่อนอื่นไปดูความหมายของ Linking Verbs กันก่อนนะคะ ไปลุยกันเลย มาทำความรู้จักกับ Linking Verbs     Linking verbs คืออะไรกันนะ Linking แปลว่า การเชื่อม มาจากรากศัพท์ link ที่เป็นกริยาเติมด้วย

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์ ค่าของฟังก์ชันไซน์และโคไซน์ จะเกี่ยวข้องกับ θ พิกัดของ จุด (x, y) ซึ่งในบทความนี้จะอธิบายเกี่ยวกับ ความสัมพันธ์ระหว่าง x, y กับ θ จากบทความที่ผ่านมาเราได้รู้จักวงกลมหนึ่งหน่วยและการวัดความยาวส่วนโค้ง ในบทความนี้น้องๆจะได้รู้จักกับฟังก์ชันไซน์ (sine function) และฟังก์ชันโคไซน์ (cosine function) และวิธีการหาค่าของฟังก์ชันทั้งสอง Sine function =

การชักชวน และแนะนำในภาษาอังกฤษ

วิธีการพูดเสนอแนะ ชักชวน และแนะนำในภาษาอังกฤษ

  สวัสดีค่ะนักเรียน ม.1 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูวิธีการพูดให้ข้อเสนอแนะ ชักชวน และแนะนำกันค่ะซึ่งในการเสนอแนะ หรือชักชวนนั้น ผู้พูดจะแสดงความคิดเห็นเสนอแนะ เพื่อให้กระทำสิ่งใดสิ่งหนึ่งด้วยกัน มีการใช้ภาษาหลายระดับ และใช้รูปประโยคหลายชนิด เช่นเดียวกับการพูดในความหมายต่างๆ ที่ผ่านมาเราจึงต้องใช้รูปประโยคต่างๆ เช่นประโยคบอกเล่า คำสั่ง ชักชวน เพื่อให้ผู้ฟังทำตาม รวมถึงเทคนิคการตอบรับและปฏิเสธ ดังในตัวอย่างรูปแบบประโยคด้านล่างนะคะ   1. ประโยคบอกเล่า (Statement)  

แนะนำอสมการเชิงเส้นตัวแปรเดียว

แนะนำอสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการ แนะนำอสมการเชิงเส้นตัวแปรเดียว ซึ่งอสมการ เป็นประโยคที่แสดงถึงการไม่เท่ากัน โดยมีวิธีการหาคำตอบคล้ายๆกับสมการ น้องๆสามารถศึกษาบทความเรื่องโจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว เพื่อศึกษาวิธีการแก้สมการและนำมาประยุกต์ใช้กับการแก้อสมการเพิ่มเติมได้ที่  ⇒⇒โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว⇐⇐ แนะนำอสมการเชิงเส้นตัวแปรเดียว        อสมการ (inequality) เป็นประโยคที่แสดงถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  <, >, ≤, ≥ หรือ ≠  แสดงความสัมพันธ์         อสมการเชิงเส้นตัวแปรเดียว

การใช้ There is และ There are ในประโยคคำถาม

สวัสดีค่ะนักเรียนชั้น ม.2 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “การใช้ There is There are ในประโยคคำถาม ” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ   There is/There are คืออะไร   There is และ There are แปลว่า