โดเมนของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

โดเมนของความสัมพันธ์

โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย D_r

กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย D_r คือสมาชิกตัวหน้า

เช่น r_1 = {(2, 2), (3, 4), (8, 9)}

จะได้ว่า D_{r_1} = {2, 3, 8}

กรณีที่ r เขียนในรูปแบบที่บอกเงื่อนไข เราอาจจะสามารถนำมาเขียนแบบแจกแจงสมาชิกได้

เช่น ให้ A = {1, 2, 3} และ r_2 = {(x, y) ∈ A × A : y = 2x}

x = 1 ; y = 2(1) = 2

x = 2 ; y = 2(2) = 4

x = 3 ; y = 2(3) = 6

ได้คู่อันดับ ดังนี้ (1, 2), (2, 4), (3, 6) เนื่องจาก (x, y) ต้องเป็นสมาชิกใน A × A

และจาก (1, 2) ∈ A × A

(2, 4) ∉ A × A

(3, 6) ∉ A × A

ดังนั้น สามารถเขียน r ในรูปแจกแจงสมาชิกได้ดังนี้  r_2 = {(1, 2)}

สรุปได้ว่า D_{r_2} = {1}

แต่บางกรณีเราไม่สามารถแจกแจงสมาชิกได้ เช่น ให้ x, y เป็นจำนวนจริงใดๆ และ r_3 = {(x, y) : y = \frac{1}{x}}

โดเมนของ r_3 คือ ค่า x ทุกตัวที่เป็นไปได้ ที่ทำให้ y เป็นจำนวนจริง

การที่จะหา x ที่ทำให้ y เป็นจำนวนจริงนั้น จำนวนของ x ที่เป็นไปได้มีเยอะมากๆๆๆๆ หายังไงก็ไม่หมดแน่นอน เราจึงต้องเปลี่ยนมา x ที่ทำให้ y ไม่เป็นจำนวนจริง ถ้าไม่มี เราสามารถตอบได้เลยว่า โดเมนคือ จำนวนจริง

แต่! ในตัวอย่างนี้เหมือนจะมี x ที่ทำให้ y ไม่เป็นจำนวนจริง นั่นคือ x = 0 จะได้ว่า y = \frac{1}{0} ซึ่ง ไม่นิยาม

ดังนั้น โดเมนคือ จำนวนจริงทั้งหมดยกเว้น 0 เขียนได้เป็น D_{r_3} = \mathbb{R} – {0}

 

ตัวอย่างการหาโดเมนของความสัมพันธ์

1.) ให้ A = {1, 2, 3} และ r = {(x, y) : y = 2x , x ∈ A}

จาก x เป็นสมาชิกใน A 

x = 1 ; y = 2(1) = 2

x = 2 ; y = 4

x = 3 ; y = 6

r = {(1, 2), (2, 4), (3, 6)}

ดังนั้น D_r = {1, 2, 3} = A

 

2.) ให้ r = {(x, y) ∈ \mathbb{R}\times\mathbb{R} : y = x²}

เงื่อนไขของ (x, y) ∈ \mathbb{R}\times\mathbb{R} 

พิจารณากราฟ y = x²

โดเมนของความสัมพันธ์

จะเห็นว่าค่ากราฟนั้นกางออกเรื่อยๆ  ค่า x เป็นไปได้เรื่อยๆไม่สิ้นสุด จาก โดเมนของความสัมพันธืคือ สมาชิกตัวหน้าของความสัมพันธ์ใน r นั่นคือ x นั่นเอง

ดังนั้น D_r = \mathbb{R}

 

3.) ให้ r = {(x, y) : y = \frac{1}{x-3}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของ y = \frac{1}{x-3} จะได้

โดเมนของความสัมพันธ์

จะเห็นได้ว่า กราฟในรูปนั้น x เป็นอะไรก็ได้ ยกเว้น 3 เพราะ  เมื่อลองลากเส้น x = 3 แล้ว กราฟของ y = \frac{1}{x-3} นั้นไม่ตัดกับเส้น x = 3 เลย

หรือเราลองสังเกตจากสมการก็ได้ว่า ถ้า x = 3 จำทำให้ตัวส่วนเป็น 0 ซึ่งหาค่าไม่ได้ (ไม่นิยาม) ดังนั้น x อยู่ใน R ยกเว้น 3

และโดเมนก็คือ ค่า x เพราะ x เป็นสมาชิกตัวหน้าของความสัมพันธ์ r 

ดังนั้น D_r = R – {3} หรือ D_r = {x : x ∈ R และ x ≠ 3}

 

4.) ให้ r = {(x, y) : y = \sqrt{x}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของสมการ y = \sqrt{x}

โดเมนของความสัมพันธ์

จะเห็นว่ากราฟที่ได้ x มีค่าตั้งแต่ 0 ไปเรื่อยๆ ไม่สิ้นสุด นั่นคือ x เป็นจำนวนจริงที่มากกว่าเท่ากับ 0

และโดเมนก็คือ ค่า x เพราะ x เป็นสมาชิกตัวหน้าของความสัมพันธ์ r 

ดังนั้น D_r = {x : x เป็นจำนวนจริง และ x ≥ 0}

 

วิดีโอ โดเมนของความสัมพันธ์

 

 

เนื้อหาที่เกี่ยวข้องกับโดเมนของความสัมพันธ์

 

  1. กราฟของความสัมพันธ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

อสมการ

อสมการ

จากบทความที่ผ่านมาได้พูดถึงเรื่องช่วงของจำนวนจริงไปแล้ว บทความนี้เราจะนำความรู้เกี่ยวกับช่วงของจำนวนจริงมาใช้ในการแก้อสมการเพื่อหาคำตอบกันนะคะ ถ้าน้องๆได้อ่านบทความนี้แล้วรับรองว่าพร้อมทำข้อสอบแน่นอนค่ะ

ประวัติความเป็นมาของวรรณคดีคำสอน เรื่องสุภาษิตพระร่วง

สุภาษิตพระร่วง   คนไทยนิยมใช้สุภาษิตสั่งสอนลูกหลานกันมาตั้งแต่สมัยก่อนจนถึงปัจจุบัน เชื่อว่าน้อง ๆ หลายคนก็คงจะเคยได้ยินสุภาษิตกันมาไม่มากก็น้อย ดังนั้นบทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ประวัติความเป็นมาของสุภาษิตพระร่วง วรรณคดีอันทรงคุณค่าและเป็นวรรณคดีเล่มแรกที่แต่งคำประพันธ์เป็นร่ายโบราณแบบร่ายสุภาพ ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของสุภาษิตพระร่วง     สุภาษิตพระร่วง เป็นวรรณคดีคำสอนที่ทรงคุณค่าที่มีมาอย่างยาวนาน มีชื่อเรียกอีกอย่างหนึ่งว่า สุภาษิตบัณฑิตพระร่วง คำว่า พระร่วง ทำให้คนเข้าใจว่าอาจจะเป็นคำสอนของกษัตริย์สักคนที่มีนามว่า พระร่วง

การเปลี่ยนแปลงของประโยค

การเปลี่ยนแปลงของประโยค ศึกษาธรรมชาติของภาษาที่ยังไม่ตาย

ภาษาเป็นกลไกสำคัญที่จะต้องเปลี่ยนแปลงควบคู่ไปกับสังคมมนุษย์ คำและประโยคในทุกภาษาอาจเปลี่ยนแปลงหรือหายไปพร้อมกับความเจริญและเสื่อมของสังคมตามยุคสมัย ภาษาที่ไม่มีการเปลี่ยนแปลงจะถูกนับเป็นภาษาที่ตายแล้ว ภาษาไทยเป็นอีกภาษาหนึ่งที่ยังคงมีความเปลี่ยนแปลงอยู่เสมอ บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้เรื่อง การเปลี่ยนแปลงของประโยค หนึ่งในเรื่องราวที่น่าสนใจของเรื่องการเปลี่ยนแปลงทางภาษา จะมีอะไรบ้างนั้น เราไปเรียนรู้พร้อม ๆ กันเลยค่ะ   การเปลี่ยนแปลงทางภาษา     ปัจจัยที่ทำให้เกิดการเปลี่ยนแปลงทางภาษา   1. เกิดจากปัจจัยทางสังคม   2. ลักษณะการออกเสียงของผู้พูด ในบางครั้งผู้พูดจะไม่สามารถออกเสียงคำได้อย่างถูกต้องทุกคำ

Suggesting Profile

การใช้ Imperative for Advice

สวัสดีค่ะนักเรียนชั้น ม.2 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ “การใช้ Imperative for Advice หรือ การใช้ประโยคแนะนำในภาษาอังกฤษ”กันค่ะ พร้อมแล้วก็ไปลุยกันเลยจร้า ประโยคแนะนำที่เจอบ่อย (Imperative for advice) คำศัพท์น่าสนใจ Advice (Noun): คำแนะนำ Advise (Verb): แนะนำ ประโยคคำแนะนำ ส่วนใหญ่แล้วจะเจอในรูปแบบของประโยคบอกเล่า ซึ่งจะมีความหมายในทางเสนอแนะ

ความสัมพันธ์

ความสัมพันธ์ ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ คู่อันดับ ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที เช่น คู่อันดับ (x, y) โดย x

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1