เมทริกซ์ และเมทริกซ์สลับเปลี่ยน

เมทริกซ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมทริกซ์

เมทริกซ์ (Matrix) คือตารางสี่เหลี่ยมที่บรรจุตัวเลขหรือตัวแปร สามารถนำมาบวก ลบ คูณกันได้ เราสามารถใช้เมทริกซ์ในการการแก้ระบบสมการเชิงเส้นได้ซึ่งจะสะดวกกว่าการแก้แบบกำจัดตัวแปรสำหรับสมการที่มากกว่า 2 ตัวแปร

ตัวอย่างการเขียนเมทริกซ์

เมทริกซ์ เรียกว่าเมทริกซ์มิติ 3×3 ซึ่ง 3 ตัวหน้าคือ จำนวนแถว 3 ตัวหลังคือ จำนวนหลัก

ซึ่งเราจะเรียกแถวในแนวนอนว่า แถว และเรียกแถวในแนวตั้งว่า หลัก

และจากเมทริกซ์ข้างต้นจะได้ว่า

1 2 3 เป็นสมาชิกในแถวที่ 1

4 5 6 เป็นสมาชิกในแถวที่ 2

7 8 9 เป็นสมาชิกในแถวที่ 3

1 4 7 เป็นสมาชิกในหลักที่ 1

2 5 8 เป็นสมาชิกในหลักที่ 2

3 6 9 เป็นสมาชิกในหลักที่ 3

 

ดังนั้น เราจะใช้สัญลักษณ์ เมทริกซ์ แทนเมทริกมิติ m × n โดยที่ m คือแถว n คือหลัก 

ซึ่ง \inline a_{ij} คือสมาชิกที่อยู่ในตำแหน่งแถวที่ i หลักที่ j โดยที่ i = 1, 2, 3, …, m และ j = 1, 2, 3,…, n

เขียน  \inline a_{ij} ในกรอบสี่เหลี่ยมได้ดังนี้

เมทริกซ์

 

ตัวอย่าง เมทริกซ์

 

1.) พิจารณาเมทริกซ์ต่อไปนี้ 

\inline \begin{bmatrix} 1&5 &7 \\ 3&2 &6 \end{bmatrix}

จากเมทริกซ์ข้างต้น จะได้ว่า

  1. เป็นเมทริกซ์ที่มี 2 แถว 3 หลัก หรือ มีมิติ 2 × 3
  2.  5 เป็นสมาชิกตำแหน่งแถวที่ 1 หลักที่ 2
  3.  3 เป็นสมาชิกตำแหน่งแถวที่ 2 หลักที่ 1

\inline \begin{bmatrix} 3\\ 1\\ 8\end{bmatrix}

จากเมทริกซ์ข้างต้น จะได้ว่า

  1. เป็นเมทริกซ์ที่มี 3 แถว 1 หลัก หรือมีมิติ 3 × 1
  2. 8 เป็นสมาชิกตำแหน่งแถวที่ 3 หลักที่ 1

 

เมทริกซ์จัตุรัส

เมทริกซ์จัตุรัส คือเมทริกซ์ที่มีจำนวนแถวเท่ากับจำนวนหลัก ซึ่งก็คือเมทริกซ์ n × n เช่น

1.)   เมทริกซ์  เมทริกซ์ 2× 2

2.)  เมทริกซ์   เมทริกซ์ 3 × 3

 

เมทริกซ์เอกลักษณ์

เมทริกซ์เอกลักษณ์ (I_{n}) คือเมทริกซ์ที่มีมิติ n × n ที่มีตัวเลข 1 บนเส้นทแยงมุมเฉียงลงจากซ้ายไปจนสุด นอกนั้นเป็น 0 หรืออธิบายง่ายๆก็คือ สมาชิกของเมทริกซ์ที่อยู่ตำแหน่งที่ 11, 22, … , nn จะเป็นเลข 1 นอกนั้นเป็น 0

เช่น 

เมทริกซ์

เมทริกซ์

การเท่ากันของ เมทริกซ์

เมทริกซ์จะเท่ากันได้ ก็ต่อเมื่อ สมาชิกตำแหน่งเดียวกันเท่ากัน เช่น 

\begin{bmatrix} 1 &2 \\ 4& 3 \end{bmatrix}=\begin{bmatrix} a &b \\ 4&d \end{bmatrix}

จากตัวอย่างจะได้ว่า

1 และ a อยู่ในตำแหน่งเดียวกัน คือ แถว1 หลัก1  ดังนั้น a = 1

2 และ b อยู่ในตำแหน่ง แถว 1 หลัก 2 ดังนั้น b = 2

และ d = 3

 

เมทริกซ์สลับเปลี่ยน

เมทริกซ์สลับเปลี่ยน (transpose of a matrix) คือเมทริกซ์ที่เกิดจากการเปลี่ยนแถวเป็นหลัก เปลี่ยนหลักเป็นแถว เช่น แถวที่ 1 ก็เปลี่ยนเป็นหลักที่ 1

สมมติให้ A เป็นเมทริกซ์ จะได้ว่า \inline A^T คือเมทริกซ์สลับเปลี่ยน

ตัวอย่าง

ให้  \inline A=\begin{bmatrix} 4& 3 &7 \\ 6& 8 & 2\\2 & 5 & 0 \end{bmatrix}  จงหา \inline A^T

จะได้ เมทริกซ์

 

ให้ A=\begin{bmatrix} 1 & 5 & 7\\ 3& 8 &4 \end{bmatrix} จงหา \inline A^T

จะได้  เมทริกซ์

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

พื้นที่ผิวทรงกรวยและลูกบาศก์

พื้นที่ผิวทรงกรวยและลูกบาศก์ การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ พื้นที่ผิวทรงกรวย ทรงกรวย คือ รูปทรงเรขาคณิต

ป.5 ไวยากรณ์เรื่อง There is _ There are และ How many

ไวยากรณ์เรื่อง There is / There are และ How many

สวัสดีค่ะนักเรียนชั้น ป.5 ที่รักทุกคน วันนี้เราจะไปเรียนรู้ “ไวยากรณ์เรื่อง There is / There are และ How many” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ ถามก่อนเรียน: อ้าวแล้ว Have/has ก็แปลว่า “มี” เหมือนกันไม่ใช่เหรอ แล้ว There is/There are

รากที่สาม

รากที่สาม

ในบทตวามนี้เราจะได้เรียนรู้การหารากที่สามของจำนวนจริงใดๆ ซึ่งทำได้หลายวิธีเช่นเดียวกับการหารากที่สอง อาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง และการใช้เครื่องคำนวณ แต่เนื่องจากการประมาณเป็นวิธีที่ยุ่งยาก ในที่นี้จึงจะกล่าวเฉพาะการหารากที่สามโดยการแยกตัวประกอบ การเปิดตาราง และการใช้เครื่องคำนวณ

เรนจ์ของความสัมพันธ์

เรนจ์ของความสัมพันธ์ เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย   กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหลัง เช่น = {(2, 2), (3, 5), (8, 10)} จะได้ว่า  = {2, 5,

คุณค่าในเรื่องพระอภัยมณี มีอะไรบ้าง?

หลังจากที่บทเรียนคราวที่แล้วเราได้เรียนเรื่องประวัติความเป็นมาของวรรณคดีเรื่องสุนทรภู่ไปแล้ว วันนี้เราจะพาน้อง ๆ ไปเรียนรู้ถึง คุณค่าในเรื่องพระอภัยมณี ว่ามีคุณค่าด้านใดบ้าง เพื่อที่น้อง ๆ จะได้รู้เหตุผลว่าทำไมวรรณคดีเรื่องนี้ถึงเป็นเรื่องที่โด่งที่สุดอีกเรื่องหนึ่งของสุนทรภู่ เป็นวรรณคดีที่ดังข้ามเวลาและอยู่ในแบบเรียนภาษาไทย ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   คุณค่าในเรื่องพระอภัยมณี     คุณค่าทางด้านวรรณศิลป์   พระอภัยมณีเป็นเรื่องมีรสทางวรรณคดีคือเสาวรจนีย์และสัลปังคพิสัย ดังนี้ เสาวรจนีย์ เป็นบทชมโฉมหรือความงาม พบในตอนที่พระอภัยชมความงามของนางเงือก     2.

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1