เมทริกซ์ และเมทริกซ์สลับเปลี่ยน

เมทริกซ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมทริกซ์

เมทริกซ์ (Matrix) คือตารางสี่เหลี่ยมที่บรรจุตัวเลขหรือตัวแปร สามารถนำมาบวก ลบ คูณกันได้ เราสามารถใช้เมทริกซ์ในการการแก้ระบบสมการเชิงเส้นได้ซึ่งจะสะดวกกว่าการแก้แบบกำจัดตัวแปรสำหรับสมการที่มากกว่า 2 ตัวแปร

ตัวอย่างการเขียนเมทริกซ์

เมทริกซ์ เรียกว่าเมทริกซ์มิติ 3×3 ซึ่ง 3 ตัวหน้าคือ จำนวนแถว 3 ตัวหลังคือ จำนวนหลัก

ซึ่งเราจะเรียกแถวในแนวนอนว่า แถว และเรียกแถวในแนวตั้งว่า หลัก

และจากเมทริกซ์ข้างต้นจะได้ว่า

1 2 3 เป็นสมาชิกในแถวที่ 1

4 5 6 เป็นสมาชิกในแถวที่ 2

7 8 9 เป็นสมาชิกในแถวที่ 3

1 4 7 เป็นสมาชิกในหลักที่ 1

2 5 8 เป็นสมาชิกในหลักที่ 2

3 6 9 เป็นสมาชิกในหลักที่ 3

 

ดังนั้น เราจะใช้สัญลักษณ์ เมทริกซ์ แทนเมทริกมิติ m × n โดยที่ m คือแถว n คือหลัก 

ซึ่ง \inline a_{ij} คือสมาชิกที่อยู่ในตำแหน่งแถวที่ i หลักที่ j โดยที่ i = 1, 2, 3, …, m และ j = 1, 2, 3,…, n

เขียน  \inline a_{ij} ในกรอบสี่เหลี่ยมได้ดังนี้

เมทริกซ์

 

ตัวอย่าง เมทริกซ์

 

1.) พิจารณาเมทริกซ์ต่อไปนี้ 

\inline \begin{bmatrix} 1&5 &7 \\ 3&2 &6 \end{bmatrix}

จากเมทริกซ์ข้างต้น จะได้ว่า

  1. เป็นเมทริกซ์ที่มี 2 แถว 3 หลัก หรือ มีมิติ 2 × 3
  2.  5 เป็นสมาชิกตำแหน่งแถวที่ 1 หลักที่ 2
  3.  3 เป็นสมาชิกตำแหน่งแถวที่ 2 หลักที่ 1

\inline \begin{bmatrix} 3\\ 1\\ 8\end{bmatrix}

จากเมทริกซ์ข้างต้น จะได้ว่า

  1. เป็นเมทริกซ์ที่มี 3 แถว 1 หลัก หรือมีมิติ 3 × 1
  2. 8 เป็นสมาชิกตำแหน่งแถวที่ 3 หลักที่ 1

 

เมทริกซ์จัตุรัส

เมทริกซ์จัตุรัส คือเมทริกซ์ที่มีจำนวนแถวเท่ากับจำนวนหลัก ซึ่งก็คือเมทริกซ์ n × n เช่น

1.)   เมทริกซ์  เมทริกซ์ 2× 2

2.)  เมทริกซ์   เมทริกซ์ 3 × 3

 

เมทริกซ์เอกลักษณ์

เมทริกซ์เอกลักษณ์ (I_{n}) คือเมทริกซ์ที่มีมิติ n × n ที่มีตัวเลข 1 บนเส้นทแยงมุมเฉียงลงจากซ้ายไปจนสุด นอกนั้นเป็น 0 หรืออธิบายง่ายๆก็คือ สมาชิกของเมทริกซ์ที่อยู่ตำแหน่งที่ 11, 22, … , nn จะเป็นเลข 1 นอกนั้นเป็น 0

เช่น 

เมทริกซ์

เมทริกซ์

การเท่ากันของ เมทริกซ์

เมทริกซ์จะเท่ากันได้ ก็ต่อเมื่อ สมาชิกตำแหน่งเดียวกันเท่ากัน เช่น 

\begin{bmatrix} 1 &2 \\ 4& 3 \end{bmatrix}=\begin{bmatrix} a &b \\ 4&d \end{bmatrix}

จากตัวอย่างจะได้ว่า

1 และ a อยู่ในตำแหน่งเดียวกัน คือ แถว1 หลัก1  ดังนั้น a = 1

2 และ b อยู่ในตำแหน่ง แถว 1 หลัก 2 ดังนั้น b = 2

และ d = 3

 

เมทริกซ์สลับเปลี่ยน

เมทริกซ์สลับเปลี่ยน (transpose of a matrix) คือเมทริกซ์ที่เกิดจากการเปลี่ยนแถวเป็นหลัก เปลี่ยนหลักเป็นแถว เช่น แถวที่ 1 ก็เปลี่ยนเป็นหลักที่ 1

สมมติให้ A เป็นเมทริกซ์ จะได้ว่า \inline A^T คือเมทริกซ์สลับเปลี่ยน

ตัวอย่าง

ให้  \inline A=\begin{bmatrix} 4& 3 &7 \\ 6& 8 & 2\\2 & 5 & 0 \end{bmatrix}  จงหา \inline A^T

จะได้ เมทริกซ์

 

ให้ A=\begin{bmatrix} 1 & 5 & 7\\ 3& 8 &4 \end{bmatrix} จงหา \inline A^T

จะได้  เมทริกซ์

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ป6 การใช้ประโยคคำสั่งในชีวิตประจำวัน

การใช้ประโยคคำสั่งในชีวิตประจำวัน

  สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ “การใช้ประโยคคำสั่งในชีวิตประจำวัน (Imperative sentence in daily life)” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด ประเภทของประโยค ” Imperative sentence “     Imperative sentence ในรูปแบบประโยคบอกเล่าจะ ใช้ Verb base

เมทริกซ์

เมทริกซ์ และเมทริกซ์สลับเปลี่ยน

เมทริกซ์ เมทริกซ์ (Matrix) คือตารางสี่เหลี่ยมที่บรรจุตัวเลขหรือตัวแปร สามารถนำมาบวก ลบ คูณกันได้ เราสามารถใช้เมทริกซ์ในการการแก้ระบบสมการเชิงเส้นได้ซึ่งจะสะดวกกว่าการแก้แบบกำจัดตัวแปรสำหรับสมการที่มากกว่า 2 ตัวแปร ตัวอย่างการเขียนเมทริกซ์ เรียกว่าเมทริกซ์มิติ 3×3 ซึ่ง 3 ตัวหน้าคือ จำนวนแถว 3 ตัวหลังคือ จำนวนหลัก ซึ่งเราจะเรียกแถวในแนวนอนว่า แถว และเรียกแถวในแนวตั้งว่า หลัก และจากเมทริกซ์ข้างต้นจะได้ว่า

ม.1 There is_There are ทั้งประโยคบอกเล่า_ คำถาม_ปฏิเสธ

การใช้ There is/There are ทั้งประโยคบอกเล่า/คำถาม/ปฏิเสธ

สวัสดีค่ะนักเรียนชั้น ม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้ “การใช้ There is/There are ทั้งประโยคบอกเล่า/คำถาม/ปฏิเสธ” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ ตารางแสดงความแตกต่างของ  There is/There are และ  Have/Has นักเรียนลองสังเกตดูความแตกต่างของการใช้ There is/There are กับ Have/has จากตารางด้านล่าง ดูนะคะ

สัดส่วน

บทความนี้ได้รวบรวมความรู้เรื่อง สัดส่วน รวมทั้งโจทย์ปัญหาเกี่ยวกับสัดส่วน ซึ่งได้รวบรวมเนื้อหาและเขียนอธิบายไว้อย่างชัดเจน รวมถึงมีคลิปวิดีโอการสอน เพื่ออำนวยความสะดวกให้กับน้องๆ สามารถเรียนรู้ได้ทุกที่ทุกเวลา แต่ก่อนจะเรียนรู้เรื่องสัดส่วนนั้น น้องๆจำเป็นต้องมีความรู้ในเรื่อง อัตราส่วนของจำนวนหลายๆจำนวน สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ อัตราส่วนของจำนวนหลายๆจำนวน ⇐⇐ สัดส่วน สัดส่วน คือ ประโยคที่แสดงการเท่ากันของอัตราส่วนสองอัตราส่วน อัตราส่วนทั้งสองมีความสัมพันธ์ไปในทิศทางเดียวกันหรือในทิศทางตรงกันข้ามก็ได้ ชนิดของสัดส่วน สัดส่วนมี 2 ชนิด คือ สัดส่วนตรง และ สัดส่วนผกผัน  

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof  จากรูป

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1