สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ ด้าน-ด้าน-ด้าน
สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมื่อเราต้องการจะพิสูจน์ถึงสิ่งของใดๆว่ามีความเท่ากันทุกประการ เราจำเป็นต้องมีหลักการที่นำมาใช้ได้จริง ดังเช่นในบทความนี้ที่กล่าวถึงรูปสามเหลี่ยมที่เท่ากันทุกประการโดยใช้ความยาวของด้าน 3 ด้าน ในการพิสูจน์

สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

ในทางคณิตศาสตร์เมื่อสามารถเคลื่อนที่รูปเรขาคณิตรูปหนึ่งไปทับรูปเรขาคณิตอีกรูปหนึ่งได้สนิท จะกล่าวว่ารูปเรขาคณิตสองรูปนั้น เท่ากันทุกประการ

ถ้ารูปสามเหลี่ยมสองรูปใดๆ มีด้านยาวเท่ากันสามคู่แล้ว รูปสามเหลี่ยมสองรูปนั้นจะเท่ากันทุกประการ

เท่ากันแบบ ด้าน ด้าน ด้าน

เท่ากันทุกประการ

ตัวอย่างที่ 1

จากรูป จงพิสูจน์ว่า BD แบ่งครึ่ง มุมABC

สามเหลี่ยมหน้าจั่วเท่ากันทุกปประการ

ความเท่ากันทุกประการ

ตัวอย่างที่ 2

กำหนดให้สามเหลี่ยมMNQ และสามเหลี่ยมMOP เป็นรูปสามเหลี่ยมหน้าจั่ว 2รูป ที่ NO = PQ ให้พิสูจน์ว่า มุมNMO = มุมPMQ โดยใช้ความสัมพันธ์แบบ ด้าน-ด้าน-ด้าน

เท่ากันแบบด้าน-ด้าน-ด้าน

สามเหลี่ยมเท่ากันทุกประการ

ตัวอย่างที่ 3

จากรูปกำหนดให้ SE = TE และ SA = TA จงพิสูจน์ว่า สามเหลี่ยมSEA และ สามเหลี่ยมTEA เป็นรูปสามเหลี่ยมสองรูปที่เท่ากันทุกประการ

รูปทรงสามเหลี่ยม

สามเหลี่ยมที่ท่ากันแบบด้าน-ด้าน-ด้าน

คลิปตัวอย่างเรื่องสามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การเก็บรวบรวมข้อมูล

การเก็บรวบรวมข้อมูล

การเก็บรวบรวมข้อมูล การเก็บรวบรวมข้อมูล เป็นขั้นตอนหนึ่งที่มีความสำคัญมากทางสถิติ เพื่อใช้ในการตัดสินใจได้อย่างถูกต้องและแม่นยำ โดยข้อมูลที่ได้มีหลากหลายรูปแบบ อาจจะเป็นตัวเลข ข้อความ หรือรูปภาพ ซึ่งเป็นข้อมูลที่ตอบสนองวัตถุประสงค์หรือเป็นเรื่องที่เราสนใจ โดยสามารถจำแนกข้อมูลได้ตามลักษณะและแหล่งที่มาของข้อมูล ได้แก่ จำแนกตามลักษณะของข้อมูล แบ่งได้เป็น 2 ประเภท คือ ข้อมูลเชิงปริมาณ (Quantitative Data) คือ ข้อมูลที่วัดค่าได้ แสดงเป็นตัวเลข ซึ่งสามารถนำมาใช้เปรียบเทียบกันได้โดยตรง เช่น จำนวนบุตรในครอบครัว,

ลิลิตตะเลงพ่าย

ลิลิตตะเลงพ่าย ความเป็นมาของลิลิตชั้นยอดของเมืองไทย

ลิลิตตะเลงพ่าย ขึ้นชื่อว่าเป็นยอดของลิลิต ที่แต่งดีที่สุด โดยบุคคลที่ได้รับการยกย่องว่าเป็นบุคคลดีเด่นทางด้านวัฒนTรรมของโลก เกริ่นมาเพียงเท่านี้น้อง ๆ ก็คงจะอยากรู้ที่มาและเรื่องของลิลิตตะเลงพ่ายมากขึ้นกว่าเดิมใช่ไหมคะ ถ้าอย่างนั้นเพื่อไม่ให้เป็นการเสียเวลา เราไปเรียนรู้วรรณคดีเรื่องสำคัญของไทยเรื่องนี้กันเลยค่ะ   ลิลิตตะเลงพ่าย ความเป็นมา   ลิลิตตะเลงพ่าย เป็นพระนิพนธ์ของสมเด็จพระมหาสมณเจ้า กรมพระปรมานุชิตชิโนรส รัตนกวีแห่งกรุงรัตนโกสินทร์ พระนามเดิมของพระองค์คือ พระองค์เจ้าวาสุกรี เป็นพระเจ้าลูกยาเธอองค์ที่ 28 ในพระบาทสมเด็จพระพุทธยอดฟ้าจุฬาโลกมหาราช     สมเด็จพระมหาสมณเจ้า

การใช้คำ

เรียนรู้และทำความเข้าใจการใช้คำในภาษาไทยอย่างง่ายๆ

การใช้คำในภาษาไทย มีความสำคัญมาก แม้ว่าน้อง ๆ จะคุ้นเคยกับภาษาไทยดีในระดับหนึ่งแล้ว แต่แน่ใจหรือเปล่าคะว่าใช้คำกันได้อย่างถูกต้องแล้ว เพราะการใช้คำให้ถูกก็ถือเป็นเรื่องสำคัญค่ะ ดังนั้นบทเรียนหลักภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่องการใช้คำต่าง ๆ ได้ถูกต้องกันค่ะ จะมีอะไรบ้างไปเรียนรู้พร้อม ๆ กันเลยค่ะ   การใช้คำ     การใช้คำกำกวม   คำกำกวม คือ การใช้คำหรือภาษาที่มีความหมายไม่ชัดเจน เป็นเหตุให้การสื่อสารผิดพลาด

สมบัติของจำนวนเต็ม

สมบัติของจำนวนเต็ม

ก่อนที่น้องๆจะได้เรียนรู้ในเรื่องสมบัติของจำนวนเต็ม น้องๆจำเป็นต้องเรียนเรื่อง การเปรียบเทียบจำนวนเต็ม และเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์  ซึ่งบทความนี้ได้รวบรวมสมบัติของจำนวนเต็ม ประกอบด้วย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม ได้แก่ สมบัติการสลับที่ สมบัติการเปลี่ยนหมู่ และสมบัติการแจกแจง  รวมไปถึงสมบัติของหนึ่งและศูนย์ เรามาศึกษาสมบัติแรกกันเลย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม สมบัติการสลับที่ สมบัติการสลับที่สำหรับการบวก ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a + b =

ที่มาของขุนช้างขุนแผน ตอน กำเนิดพลายงาม

​ขุนช้างขุนแผนเป็นวรรณกรรมที่เชื่อว่ามีเค้าเรื่องจริงในสมัยอยุธยา มีมากมายหลายตอน แต่ตอนที่ถูกนำมาให้เด็กได้เรียนกันมีด้วยกันสองตอนคือกำเนิดพลายงามและขุนช้างถวายฎีกา สำหรับตอนที่น้อง ๆ จะได้เรียนรู้กันในวันนี้คือตอน กำเนิดพลายงาม ซึ่งคือว่าเป็นตอนที่สำคัญอย่างมากเพราะเป็นเหมือนจุดเริ่มต้นของเรื่องราวทั้งหมดของเรื่อง ตอนนี้จะมีความเป็นมา เรื่องย่อ และมีความดีเด่นอย่างไรบ้าง ถ้าพร้อมแล้วเราไปดูพร้อมกันเลยค่ะ   ความเป็นมา   ขุนช้างขุนแผนเป็นวรรณคดีที่มีมาอย่างยาวนาน แต่ในสมัยรัชกาลที่ 2 พระบาทสมเด็จพระพุทธเลิศหล้านภาลัย โปรดเกล้าฯ ให้ชำระเสภาขุนช้างขุนแผน ได้ทรงประชุมกวีเอกสมัยนั้น ช่วยกันแต่งคนละตอนสองตอน สุนทรภู่ก็ได้รับมอบหมายให้ร่วมแต่งด้วย และท่านคงต้องแต่งอย่างสุดฝีมือทำให้ตอน

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1