สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ ด้าน-ด้าน-ด้าน
สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมื่อเราต้องการจะพิสูจน์ถึงสิ่งของใดๆว่ามีความเท่ากันทุกประการ เราจำเป็นต้องมีหลักการที่นำมาใช้ได้จริง ดังเช่นในบทความนี้ที่กล่าวถึงรูปสามเหลี่ยมที่เท่ากันทุกประการโดยใช้ความยาวของด้าน 3 ด้าน ในการพิสูจน์

สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

ในทางคณิตศาสตร์เมื่อสามารถเคลื่อนที่รูปเรขาคณิตรูปหนึ่งไปทับรูปเรขาคณิตอีกรูปหนึ่งได้สนิท จะกล่าวว่ารูปเรขาคณิตสองรูปนั้น เท่ากันทุกประการ

ถ้ารูปสามเหลี่ยมสองรูปใดๆ มีด้านยาวเท่ากันสามคู่แล้ว รูปสามเหลี่ยมสองรูปนั้นจะเท่ากันทุกประการ

เท่ากันแบบ ด้าน ด้าน ด้าน

เท่ากันทุกประการ

ตัวอย่างที่ 1

จากรูป จงพิสูจน์ว่า BD แบ่งครึ่ง มุมABC

สามเหลี่ยมหน้าจั่วเท่ากันทุกปประการ

ความเท่ากันทุกประการ

ตัวอย่างที่ 2

กำหนดให้สามเหลี่ยมMNQ และสามเหลี่ยมMOP เป็นรูปสามเหลี่ยมหน้าจั่ว 2รูป ที่ NO = PQ ให้พิสูจน์ว่า มุมNMO = มุมPMQ โดยใช้ความสัมพันธ์แบบ ด้าน-ด้าน-ด้าน

เท่ากันแบบด้าน-ด้าน-ด้าน

สามเหลี่ยมเท่ากันทุกประการ

ตัวอย่างที่ 3

จากรูปกำหนดให้ SE = TE และ SA = TA จงพิสูจน์ว่า สามเหลี่ยมSEA และ สามเหลี่ยมTEA เป็นรูปสามเหลี่ยมสองรูปที่เท่ากันทุกประการ

รูปทรงสามเหลี่ยม

สามเหลี่ยมที่ท่ากันแบบด้าน-ด้าน-ด้าน

คลิปตัวอย่างเรื่องสามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ส่วนต่างๆ ของวงกลม

ส่วนต่างๆ ของวงกลม ก่อนที่เราจะมารู้จักส่วนต่างๆ ของวงกลม เรามาเริ่มรู้จักวงกลมกันก่อน จากคำนิยามของวงกลมที่กล่าวว่า “วงกลมเกิดจากชุดของจุดที่มาเรียงต่อกันบนระนาบเดียวกัน โดยทุกจุดอยู่ห่างจากจุดจุดหนึ่งซึ่งเป็นจุดคงที่ในระยะทางที่เท่ากันทุกจุด”   โดยเรียกจุดคงที่นี้ว่า จุดศูนย์กลางของวงกลม เรียกระยะทางที่เท่ากันนี้ว่า รัศมีของวงกลม       วงกลม คือ รูปทรงเรขาคณิตที่มีสองมิติเเละจะมีมุมภายในของวงกลมที่มีขนาด 360 องศา โดยทั่วไปในชีวิตประจำวัน เราจะเห็นสิ่งที่มีลักษณะเป็นวงกลมอยู่รอบ ๆ ตัวเราอยู่เยอะเเยะมากมาย

คุณศัพท์บอกความรู้สึก

การใช้คำคุณศัพท์และการบอกความรู้สึก

สวัสดีค่ะนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิคและวิธีการใช้ Descriptive Adjective การใช้คำคุณศัพท์บอกลักษณะและความรู้สึก กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า    ความหมายของคำคุณศัพท์     คำคุณศัพท์หรือ Adjective มีตัวย่อคือ Adj.  ทำหน้าที่ขยายคำนามหรือสรรพนามที่อยู่ในประโยค คำนามหรือสรรพนาม ณ ที่นี้ ก็คือ คน สัตว์ สิ่งของ สถานที่

การใช้ Auxiliary Verb: can, can’t

การใช้ Auxiliary Verb: can, can’t  บทนำแสนแซ่บ สวัสดีครับพ่อแม่พี่น้องสุดปังทุกท่าน วันนี้เรามาคุยกันเรื่องของคำกริยาช่วยที่ทำให้เรารู้ว่าคนนั้น ๆ สิ่งนั้น หรืออันนั้นมีความสามารถในการทำอะไรได้บ้างกันดีกว่า  ในภาษาไทยเอง เวลาเราจะอธิบายว่าเรามีความสามารถอะไรเราก็มักจะพูดว่า “เรา… ทำได้” หรือ “เราสามารถ….ทำได้” โดยภาษาอังกฤษสุดที่รักของเราเองก็มีอะไรแบบนั้นเหมือนกัน โดยเค้าใช้คำว่า Can มาช่วย โดยเราจะเรียกคำกริยาช่วยเหลือนี้ว่า Auxiliary verb หรือ

NokAcademy_Infinitives after verbs

Infinitives after verbs

Hi guys! สวัสดีค่ะนักเรียนม.5 ที่รักทุกคนวันนี้เราจะไปดูการใช้ Infinitives after verbs กันเด้อ ถ้าพร้อมแล้วก็ไปลุยกันโลดจร้า Let’s go!   ทบทวนความหมายของ “Infinitive”   Infinitive คือ   กริยารูปแบบที่ไม่ผัน ไม่เติมอะไรใดๆเลย ที่นำหน้าด้วย to (Infinitive with “to” หรือ

สมมูลและนิเสธ

สมมูลและนิเสธของประโยคที่มีตัวบ่งปริมาณ

“สมมูลและนิเสธ” ของประโยคที่มีตัวบ่งปริมาณ สมมูลและนิเสธ เราเคยเรียนกันไปแล้วก่อนหน้านี้ แต่เป็นของประพจน์ p, q, r แต่ในบทความนี้จะเป็นสมมูลและนิเสธของประโยคที่มีตัวบ่งปริมาณ ซึ่งก็จะเอาเนื้อหาก่อนหน้ามาปรับใช้กับประโยคที่มีตัวบ่งปริมาณ สิ่งที่เราจะต้องรู้และจำให้ได้ก็คือ การสมมูลกันของประพจน์ เพราะจะได้ใช้ในบทนี้แน่นอนน ใครที่ยังไม่แม่นสามารถไปอ่านได้ที่ บทความรูปแบบของประพจน์ที่สมมูลกัน  นิเสธของตัวบ่งปริมาณ เมื่อเราเติมนิเสธลงไปในประโยคที่มีตัวบ่งปริมาณ ข้อความต่อไปนี้จะสมมูลกัน กรณี 1 ตัวแปร ∼∀x[P(x)] ≡ ∃x[∼P(x)] ∼∃x[P(x)]

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1