สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก หรือ \Sigma  เรียกว่า ซิกมา ( Sigma ) เราใช้เพื่อลดรูปการบวกกันของตัวเลข เนื่องจากว่าบางทีเป็นการบวกของจำนวนตัวเลข 100 พจน์ ถ้ามานั่งเขียนทีละตัวก็คงจะเยอะไป เราจึงจะใช้เครื่องหมายซิกมามาใช้เพื่อประหยัดเวลาในการเขียนนั่นเอง

เช่น 1 + 2 + 3 + 4 +5  สามารถเขียนแทนด้วย สัญลักษณ์แทนการบวก

1 + 1 + 1 + 1 + 1 + 1  สามารถเขียนแทนด้วย \sum_{i=1}^{6}1

 

สูตรผลร่วม

สูตรเหล่านี้จะทำให้น้องๆประหยัดเวลาในการทำโจทย์มากๆ เนื่องจากไม่ต้องมานั่งแทน n ทีละตัว แล้วนำมาบวกกัน แต่สามารถใช้สูตรนี้ในการหาผลรวมได้เลย ดังนั้นจำสูตรเหล่านี้ไว้ดีๆนะคะ

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

\sum_{i=1}^{n}i^{3}=(\frac{n(n+1)}{6})^{2}

***สูตรข้างต้นใช้ได้กับการบวกตั้งแต่ 1 ถึง n เท่านั้น***

สมบัติที่ควรรู้เกี่ยวกับ \Sigma

สมบัติเหล่านี้จะช่วยให้น้องๆคิดเลขได้ง่ายขึ้นและประหยัดเวลาในการทำโจทย์แต่ละข้อได้เยอะมากๆ

ให้ a_n,b_n เป็นลำดับของจำนวนจริงใดๆ

1)\sum_{n=1}^{k}c=kc        โดยที่ c เป็นค่าคงที่ใดๆ

2) สัญลักษณ์แทนการบวก

3)สัญลักษณ์แทนการบวก

4)\sum ca_n=c\sum a_n  โดยที่ c เป็นจำนวนจริงใดๆ

 

ตัวอย่างเกี่ยวกับสัญลักษณ์การบวก

1)จงหาค่าของ \sum_{n=1}^{4}5

วิธีทำ จากโจทย์เราจะใช้สมบัติของซิกมาข้อที่ 1 เนื่องจาก 5 เป็นค่าคงที่ สัญลักษณ์แทนการบวก

ดังนั้นจะได้ว่า \sum_{n=1}^{4}5=4(5)=20

 

2) จงหาค่าของ \sum_{n=1}^{50}(-1)

วิธีทำ ใช้สมบัติข้อที่ 1 เนื่องจาก -1 เป็นค่าคงที่  \sum_{n=1}^{k}c=kc จะได้

สัญลักษณ์แทนการบวก

 

3) ถ้า a_1+a_2+a_3+a_4=35 จงหาค่า \sum_{n=1}^{4}5a_n

วิธีทำ จากโจทย์จะเห็นว่า สัญลักษณ์แทนการบวก 

พิจารณา \sum_{n=1}^{4}5a_n โดยใช้สมบัติข้อที่ 4 \sum ca_n=c\sum a_n

ดังนั้นจะได้ \sum_{n=1}^{4}5a_n=5\sum_{n=1}^{4}a_n และเนื่องจากเรารู้ว่า a_1+a_2+a_3+a_4=\sum_{n=1}^{4}a_n=35  

ดังนั้น \sum_{n=1}^{4}5a_n=5\sum_{n=1}^{4}a_n=5(35)=175

 

4)  ให้ \sum_{n=1}^{10}a_n=55, \sum_{n=1}^{10}b_n=27,\sum_{n=1}^{10}c_n=-22 จงหา \sum_{n=1}^{10}[5a_n-2b_n-6c_n]

วิธีทำ  เราจะพิจารณาสิ่งที่โจทย์ถามก่อน นั่นก็คือ \sum_{n=1}^{10}[5a_n-2b_n-6c_n] เราจะเห็นว่าในวงเล็บนั้นเป็นลำดับที่กำลังลบกันอยู่และจากสมบัติของซิกมาเราสามารถกระจายซิกมาเข้าไปได้(สมบัติข้อที่ 3) จะได้ว่า

สัญลักษณ์แทนการบวก

และจากสมบัติข้อที่ 4 เราสามารถดึงข้าคงที่ออกมาไว้ข้างนอกซิกมาได้ จะได้ว่า

\sum_{n=1}^{10}5a_n-\sum_{n=1}^{10}2b_n-\sum_{n=1}^{10}6c_n=5\sum_{n=1}^{10}a_n-2\sum_{n=1}^{10}b_n-6\sum_{n=1}^{10}c_n 

จะเห็นว่าเราสามารถตอบได้แล้ว เพราะเราสามารถเอาสิ่งที่โจทย์กำหนดให้มาแทนค่าลงไปได้แล้วจะได้เป็น

5\sum_{n=1}^{10}a_n-2\sum_{n=1}^{10}b_n-6\sum_{n=1}^{10}c_n=5(55)-2(27)-6(-22)=353

ดังนั้น \sum_{n=1}^{10}[5a_n-2b_n-6c_n]=353

 

5) จงหาผลบวกของ 1 + 2 + 3 + 4 +…+ 64

วิธีทำ จากโจทย์เป็นการบวกกันของจำนวนนับตั้งแต่ 1 ถึง 64  และเราสามารถเขียน 1 + 2 + 3 + 4 +…+ 64 ให้อยู่ในรูปของซิกมาได้ จะได้ว่า

1 + 2 + 3 + 4 +…+ 64 = \sum_{i=1}^{64}i 

และจากสูตร สัญลักษณ์แทนการบวก  ในโจทย์ข้อนี้ n = 64   ดังนั้นจะได้ว่า

สัญลักษณ์แทนการบวก

ดังนั้น 1 + 2 + 3 + 4 +…+ 64 = 2,080

 

6) จงหาผลบวกของ 1^2+2^2+3^2+...+10^2

วิธีทำ จากโจทย์เป็นการบวกของกำลังสองของจำนวนนับตั้งแต่ 1 ถึง 10 และเราสามารถเขียน 1^2+2^2+3^2+...+10^2 ให้อยู่ในรูปของซิกมาได้

จะได้เป็น

1^2+2^2+3^2+...+10^2=\sum_{i=1}^{10}i^2

และจากสูตร  สัญลักษณ์แทนการบวก เราจะเห็นว่า n = 10 ดังนั้นจะได้

สัญลักษณ์แทนการบวก

ดังนั้น 1^2+2^2+3^2+...+10^2 = 385

 

สรุป จากตัวอย่างข้างต้นจะเห็นว่าสมบัติของซิกมาและสูตรเกี่ยวกับผลบวกนั้นมีประโยชน์ในการแก้โจทย์อย่างมาก ทำให้ประหยัดเวลาในการคำนวณ และทำให้โจทย์ที่เหมือนจะยากนั้นง่ายขึ้นอีกด้วย ดังนั้นน้องๆอย่าลืมจำสูตรและสมบัติเหล่านี้นะคะ

 

วิดีโอเกี่ยวกับ สัญลักษณ์แทนการบวก

น้องๆสามารถเรียนรู้เพิ่มเติมเกี่ยวกับซิกมาและสมบัติของซิกมาได้จากคลิปด้านล่างนี้เลยค่ะ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

M2 V. to be + ร่วมกับ Who WhatWhere + -Like + infinitive

การใช้ V. to be ร่วมกับ Who/ What/Where และ Like +V. infinitive

สวัสดีค่ะนักเรียนชั้นม.2 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ V. to be + ร่วมกับ Who/ What/Where + -Like + infinitive ซึ่งเป็นโครงสร้างที่สับสนบ่อย แต่ที่จริงแล้วง่ายมากๆ ไปลุยกันเลยจ้า Let’s go ความหมาย    Verb to be

โคลงโลกนิติ ประวัติความเป็นมาและเรื่องย่อ

โคลงโลกนิติ เป็นคำโคลงที่ถูกแต่งไว้ตั้งแต่สมัยกรุงศรีอยุธยา ดูจากช่วงเวลาแล้ว น้อง ๆ หลายคนคงจะสงสัยว่าเหตุใดบทประพันธ์ที่มีมาตั้งแต่ยุคก่อนโน้น ยังถูกนำมาเป็นบทเรียนให้คนรุ่นหลังสมัยนี้ศึกษาอยู่ โคลงโลกนิติเป็นบทประพันธ์แบบใด ถึงได้รับการอนุรักษ์ไว้มาอย่างยาวนาน วันนี้เรามาเรียนรู้ถึงประวัติความเป็นมาและเรื่องย่อของโคลงโลกนิติกันค่ะ โคลงโลกนิติ ประวัติและความเป็นมา โคลงโลกนิติเป็นบทประพันธ์ที่มีมาตั้งแต่สมัยกรุงศรีอยุธยา ไม่ปรากฏนามผู้แต่งที่ชัดเจน เนื่องจากเป็นสุภาษิตเก่าที่ถูกนำมาร้อยเรียงเป็นคำโคลง ต่อมา เมื่อถึงสมัยพระบาทสมเด็จพระนั่งเกล้าเจ้าอยู่หัว ทรงปฏิสังขรณ์วัดพระเชตุพนวิมลมังคลาราม (วัดโพธ์) และประสงค์ให้มีการนำโคลงโลกนิติมาจารึกลงแผ่นศิลาติดไว้เป็นธรรมทาน เพื่อที่ประชาชนจะได้ศึกษาคติธรรมจากบทประพันธ์   ผู้แต่งโคลงโลกนิติ เดิมทีไม่มีปรากฏชื่อผู้แต่งที่ชัดเจนและไม่มีหลักฐานยืนว่าโคลงโลกนิติถูกแต่งขึ้นเมื่อไหร่ แต่นักวรรณคดีศึกษาคาดว่าโคลงโลกนิติแพร่หลายในสมัยกรุงศรีอยุธยา

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

รากที่ n ของจำนวนจริง รากที่ n ของจำนวนจริง คือจำนวนจริงตัวหนึ่งยกกำลัง n แล้วเท่ากับ x   เมื่อ n > 1 เราสามารถตรวจสอบรากที่ n ได้ง่ายๆ โดยนิยามดังนี้ นิยาม ให้  x, y เป็นจำนวนจริง และ n

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม การแยกตัวประกอบพหุนาม เป็นการแยกตัวประกอบของสมการเพื่อให้ง่ายต่อการหาคำตอบของสมการที่จะต้องเรียนในเนื้อหาถัดไป ในบทความนี้จะพูดถึงพหุนามดีกรี 2 ตัวแปรเดียว พหุนามดีกรี 2 คือ พหุนามที่มีเลขยกกำลังสูงสุด คือ 2 พหุนามดีกรี 2 ตัวแปรเดียว คือ พหุนามที่มีเลขยกกำลังสูงสุดคือ 2 และ มีตัวแปร 1 ตัว เขียนอยู่ในรูป ax² +

past simple tense

Past Simple Tense

สวัสดีน้องๆ ม. 4 ทุกคนนะครับ วันนี้เราจะมาพูดถึงเรื่อง Past Simple Tense ในภาษาอังกฤษ จะเป็นอย่างไรลองไปดูกันเลยดีกว่าครับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1