สัจนิรันดร์

ในบทความจะเขียนเกี่ยวกับวิธีการพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ ซึ่งจะเน้นให้น้องๆเข้าใจหลักการของการพิสูจน์ สิ่งที่น้องจะได้จากบทความนี้คือ น้องจะสามารถพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ได้และหากน้องๆขยันทำโจทย์บ่อยๆจะทำให้น้องวิเคราะห์โจทย์เกี่ยวกับสัจนิรันดร์ได้ง่ายขึ้นแน่นอนค่ะ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สัจนิรันดร์ คือรูปแบบของประพจน์ที่มีค่าความจริงเป็นจริงเสมอ

วิธีการพิสูจน์การเป็นสัจนิรันดร์

การพิสูจน์ทำได้หลายวิธีไม่ว่าจะเป็น มองจากตารางค่าความจริง หรืออาจจะหาข้อขัดแย้งก็ได้

1) วิธีพิสูจน์จากตารางค่าความจริง

ถ้าเรามองจากตารางค่าความจริงประพจน์ที่เราพิจารณาจะต้องเป็น “จริงทุกกรณี” ถ้าเป็นเท็จแค่กรณีเดียวถือว่าไม่เป็นสัจนิรันดร์

เช่น พิจารณาประพจน์  (p→q)∨p ว่าเป็นสัจนิรันดร์หรือไม่

วิธีพิสูจน์ เราจะใช้วิธีสร้างตารางค่าความจริง ของประพจน์ (p→q)∨p

จากตารางจะเห็นว่าทุกกรณีมีค่าความจริงทั้งหมด ดังนั้นประพจน์ (p→q)∨p

เป็นสัจนิรันดร์

ลองมาดูตัวอย่างกรณีที่ไม่เป็นสัจนิรันดร์

พิจารณาประพจน์ (p∨q)→q ว่าเป็นสัจนิรันดร์หรือไม่

เราจะสร้างตารางค่าความจริง ดังนี้

จากตารางจะได้ว่า ประพจน์ (p→q)∨p ไม่เป็นสัจนิรันดร์ เพราะว่ามีกรณีที่ทำให้ประพจน์มีค่าความจริงเป็นเท็จ

จากตัวอย่าง 2 ตัวอย่างนี้ จะเห็นว่าการใช้ตารางค่าความจริงจะทำให้เราเห็นภาพง่าย แต่ก็มีข้อเสียอยู่ คือ ในกรณีที่มีตัวแปร(p,q,r,s)มากกว่า 2 เราจะต้องหาทุกกรณีซึ่งจะทำให้เสียเวลามาก ดังนั้น การใช้ตารางค่าความจริงอาจจะไม่เหมาะกับโจทย์บางรูปแบบ

แต่ข้อดีของการใช้ตารางก็คือ สำหรับคนที่ไม่ค่อยแม่นจะทำให้เราเข้าใจและเห็นภาพได้ง่าย

2.) พิสูจน์ด้วยวิธีสมมติว่าเป็นเท็จ

ก็คือการสมมติว่าประพจน์มีค่าความจริงเป็นเท็จ จากนั้นเราก็จะพิจารณาว่า ประพจน์ดังกล่าว จะเป็นเท็จในกรณีไหนบ้าง ถ้าเกิดการขัดแย้งแสดงว่าประพจน์ดังกล่าวเป็นสัจนิรันดร์ แต่ถ้าไม่ขัดแย้งกันแสดงว่าประพจน์ดังกล่าวไม่เป็นสัจนิรันดร์ อ่านแล้วอาจจะงงๆ ลองมาดูตัวอย่างดีกว่าค่ะ

เช่น พิจารณาประพจน์  (p→q)∨p ว่าเป็นสัจนิรันดร์หรือไม่

วิธีพิสูจน์

3.) วิธียกตัวอย่างค้าน

วิธีจะเหมาะกับกรณีที่ไม่เป็นสัจนิรันดร์ เราจะยกตัวอย่างที่ทำให้ประพจน์ไม่เป็นสัจนิรันดร์

เช่น จงตรวจสอบว่า p→(p∧q) เป็นสัจนิรันดร์หรือไม่ ถ้าไม่จงยกตัวอย่าง

วิธีทำ กำหนดให้ p มีค่าความจริงเป็น จริง และ q มีค่าความจริงเป็นเท็จ

พิจารณาประพจน์ p→(p∧q)

จะเห็นว่าเมื่อให้ p มีค่าความจริงเป็นจริง และ q มีค่าความจริงเป็นเท็จ เราจะได้ประพจน์ที่มีค่าความจริงเป็นเท็จ เมื่อมีกรณีที่เป็นเท็จอยู่ ทำให้ไม่เป็นสัจนิรันดร์

จำไว้ว่า สัจนิรันด์คือต้องเป็นจริงเสมอ ถ้ามีกรณีที่ทำให้เป็นเท็จ ประพจน์นั้นจะไม่เป็นสัจนิรันดร์ทันที!!

ตัวอย่าง

 

1.) จงพิสูจน์ว่าประพจน์ (p→q)↔(∼p∨q) เป็นสัจนิรันดร์

วิธีพิสูจน์ สร้างตารางค่าความจริงได้ดังนี้

เนื่องจาก ค่าความจริงของประพจน์(p→q)↔(∼p∨q)มีความความจริงเป็นจริงทุกกรณี ดังนั้นประพจน์(p→q)↔(∼p∨q)เป็นสัจนิรันดร์

 

2.) จงแสดงว่าประพจน์ [(p→q)∧(q→r)]→(p→r) เป็นสัจนิรันดร์

วิธีทำ เราจะสมมติให้ ประพจน์[(p→q)∧(q→r)]→(p→r)มีค่าความจริงเป็นเท็จ

ดังนั้น [(p→q)∧(q→r)]→(p→r) เป็นสัจนิรันดร์

วิธีการเลือกใช้วิธีพิสูจน์ ให้ดูจากตัวเชื่อมระหว่างประพจน์2ประพจน์ ถ้าเป็น “→” และ “∨” มักจะใช้วิธีสมมติขัดแย้งได้ แต่ถ้าเป็นอย่างอื่นอาจจะต้องใช้วิธีการยกตัวอย่างกรณีที่ทำให้เป็นเท็จ หรือจำเป็นที่จะต้องทำตารางค่าความจริง

หลังจากศึกษาดูตัวอย่างแล้วน้องๆอาจจะยังเลือกไม่ค่อยได้ว่ากรณีไหนควรใช้วิธีแบบไหน แต่หากน้องๆหมั่นทำโจทย์จะทำให้น้องเชี่ยวชาญการใช้วิธีพิสูจน์มากขึ้น และจะทำให้น้องๆได้ทวนเรื่องค่าความจริงของประพจน์ไปด้วย

ไม่มีใครเข้าใจตั้งแต่ครั้งแรกที่เรียน ถ้าน้องเปิดใจให้วิชาคณิตศาสตร์และขยันทำโจทย์ คณิตศาสตร์ก็เป็นอีกวิชาที่สนุก สู้ๆนะคะ❤️❤️

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โจทย์ปัญหาการวัด ม.2

ในบทความนี้เราจะได้เรียนรู้ตัวอย่างโจทย์การแปลงหน่วย และหาพื้นที่ของรูปเรขาคณิตต่างๆ พร้อมทั้งเรียนรู้การใช้สูตรที่เร็วขึ้น

การอ่านบทร้อยแก้ว อ่านอย่างไรให้น่าฟัง

หลังจากที่เราได้เรียนรู้เรื่องการบทร้อยกรองไปแล้ว วันนี้เราจะมาพูดถึงบทร้อยแก้วกันบ้าง ซึ่งน้อง ๆ หลายคนคงจะรู้จักบทร้อยแก้วกันดีอยู่แล้ว เพราะเป็นสิ่งที่อยู่ในชีวิตประจำวัน แต่น้อง ๆ ทราบไหมคะว่า การอ่านบทร้อยแก้ว ก็มีวิธีอ่านที่ถูกต้องเหมือนกัน เพราะการที่เราอ่านไม่ถูกต้องนั้นก็อาจจะทำให้ไม่น่าฟัง น่าเบื่อ รวมไปถึงอาจทำให้ใจความที่ผู้แต่งต้องการจะสื่อสารคลาดเคลื่อนได้อีกด้วย ถ้าอยากรู้แล้วว่ามีหลักเกณฑ์และวิธีอ่านอย่างไร ไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ร้อยแก้วคืออะไร ?   บทข้อความทั่วๆ ไป ทั้งภาษาพูดและภาษาเขียน โดยต้องเขียนเป็นประโยค ข้อความติดต่อกัน

NokAcademy_ม5 Relative Clause

การเรียนเรื่อง Relative Clause

สวัสดีค่ะนักเรียนม. 5 ที่รักทุกคน วันนี้เราจะไปดู Relative clause หรือ อนุประโยคในภาษาอังกฤษ ที่ทำหน้าที่เหมือนกันกับคำคุณศัพท์ (Adjective) ซึ่งมีหน้าที่ขยายคำนามที่อยู่ข้างหน้า  และจะใช้ตามหลัง Relative Pronoun เช่น  who, whom, which, that, และ whose แต่สงสัยมั้ยคะว่าทำไมต้องเรียนเรื่องนี้ ลองดูตัวอย่างประโยคด้านล่างแล้วจะร้องอ๋อมากขึ้น พร้อมข้อสอบ Error

บทพากย์เอราวัณ

ศึกษาตัวบทที่น่าสนใจในเรื่องบทพากย์เอราวัณ

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคน กลับเข้าสู่เนื้อหาภาษาไทยสนุก ๆ อีกแล้ว สำหรับเรื่องที่เราจะมาเรียนรู้กันวันนี้ เป็นบทเรียนที่ต่อจากครั้งที่แล้วเรื่องความเป็นมาของวรรณคดีอย่างบทพากย์เอราวัณ ซึ่งครั้งนี้เราจะมาศึกษาตัวบทที่น่าสนใจในเรื่องนี้กัน ถ้าน้อง ๆ คนไหนพร้อมแล้วก็เตรียมตัวเข้าสู่เนื้อหากันได้เลย ศึกษาตัวบทที่น่าสนใจ คำศัพท์ กายิน         หมายถึง    กาย, ร่างกาย อมรินทร์   

ระบบจำนวนจริง

ระบบจำนวนจริง

ระบบจำนวนจริง “ระบบจำนวนจริง” เป็นรากฐานสำคัญของวิชาคณิตศาสตร์ ประกอบไปด้วยจำนวนต่างๆ ได้แก่ จำนวนตรรกยะ จำนวนอตรรกยะ จำนวนเต็ม จำนวนนับ โครงสร้าง ระบบจำนวนจริง มนุษย์เรามีความคิดเรื่องจำนวนและระบบการนับมาตั้งแต่โบราณ และจำนวนที่มนุษย์เรารู้จักเป็นอย่างแรกก็คือ จำนวนนับ การศึกษาระบบของจำนวนจึงใช้พื้นฐานของจำนวนนับในการสร้างจำนวนอื่นขึ้นมา จนกลายมาเป็นจำนวนจริง และจำนวนเชิงซ้อน (เนื้อหาม.5) ดังนั้น ถ้าน้องๆเข้าใจจำนวนนับแล้วน้องๆก็จะสามารถศึกษาระบบจำนวนอื่นๆได้ง่ายขึ้น   โครงสร้าง     จำนวนจริง จำนวนจริงคือจำนวนที่ประกอบไปด้วย

ส่วนต่างๆ ของวงกลม

ส่วนต่างๆ ของวงกลม ก่อนที่เราจะมารู้จักส่วนต่างๆ ของวงกลม เรามาเริ่มรู้จักวงกลมกันก่อน จากคำนิยามของวงกลมที่กล่าวว่า “วงกลมเกิดจากชุดของจุดที่มาเรียงต่อกันบนระนาบเดียวกัน โดยทุกจุดอยู่ห่างจากจุดจุดหนึ่งซึ่งเป็นจุดคงที่ในระยะทางที่เท่ากันทุกจุด”   โดยเรียกจุดคงที่นี้ว่า จุดศูนย์กลางของวงกลม เรียกระยะทางที่เท่ากันนี้ว่า รัศมีของวงกลม       วงกลม คือ รูปทรงเรขาคณิตที่มีสองมิติเเละจะมีมุมภายในของวงกลมที่มีขนาด 360 องศา โดยทั่วไปในชีวิตประจำวัน เราจะเห็นสิ่งที่มีลักษณะเป็นวงกลมอยู่รอบ ๆ ตัวเราอยู่เยอะเเยะมากมาย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1