สมมูลและนิเสธของประโยคที่มีตัวบ่งปริมาณ

สมมูลและนิเสธ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

“สมมูลและนิเสธ” ของประโยคที่มีตัวบ่งปริมาณ

สมมูลและนิเสธ เราเคยเรียนกันไปแล้วก่อนหน้านี้ แต่เป็นของประพจน์ p, q, r แต่ในบทความนี้จะเป็นสมมูลและนิเสธของประโยคที่มีตัวบ่งปริมาณ ซึ่งก็จะเอาเนื้อหาก่อนหน้ามาปรับใช้กับประโยคที่มีตัวบ่งปริมาณ สิ่งที่เราจะต้องรู้และจำให้ได้ก็คือ การสมมูลกันของประพจน์ เพราะจะได้ใช้ในบทนี้แน่นอนน ใครที่ยังไม่แม่นสามารถไปอ่านได้ที่ บทความรูปแบบของประพจน์ที่สมมูลกัน 

นิเสธของตัวบ่งปริมาณ

เมื่อเราเติมนิเสธลงไปในประโยคที่มีตัวบ่งปริมาณ ข้อความต่อไปนี้จะสมมูลกัน

กรณี 1 ตัวแปร

∀x[P(x)] ≡ ∃x[∼P(x)]

∼∃x[P(x)] ≡ ∀x[∼P(x)]

กรณี 2 ตัวแปร

∼[∀x∃x [P(x, y)]] ≡ ∃x∀x[∼P(x, y)]

∼[∃x∀x[P(x, y)]] ≡ ∀x∃x [∼P(x, y)]

∼[∃x∃x[P(x, y)]] ≡ ∀x∀x [∼P(x, y)]

∼[∀x∀x [P(x, y)]] ≡ ∃x∃x[∼P(x, y)]

**การเติมนิเสธลงไปในประโยคที่มีตัวบ่งปริมาณเอกภพสัมพัทธ์จะยังคงเดิม เช่น ถ้าเอกภพสัมพัทธ์เป็น \mathbb{R} เมื่อเติมนิเสธลงไป เอกภพสัมพัทธ์ก็ยังเป็น \mathbb{R} เหมือนเดิม

ข้อสังเกต จะเห็นว่าเมื่อเติมนิเสธลงไป สิ่งที่เปลี่ยนไปคือตัวบ่งปริมาณ เช่น ถ้าตอนแรกเป็น ∀ เติมนิเสธไปจะกลายเป็น ∃ และเครื่องหมาย ∼ จากที่อยู่หน้าตัวบ่งปริมาณก็จะไปอยู่หน้า P(x) แทน

**แล้วถ้าหน้า P(x) มีเครื่องหมาย ∼ อยู่แล้วล่ะ??

เรามาดูตัวอย่างกัน  ∼∃x[∼ P(x)] ≡ ∀x[∼(∼ P(x))] ≡ ∀x[ P(x)]

จะเห็นว่าตัวอย่างข้างต้นก็เหมือนประพจน์ทั่วไปค่ะ เช่น ∼(∼p) ≡ p เห็นไหมคะว่าไม่ต่างกันเลยแค่มีตัวบ่งปริมาณเพิ่มมา

จากที่เรารู้จักนิเสธแล้วเรามาทำตัวอย่างกันเลยค่ะ

ตัวอย่าง “สมมูลและนิเสธ” ของตัวบ่งปริมาณ

1.) นิเสธของข้อความ ∀x∃y[(xy = 0 ∧ x ≠ 0 ) → y = 0] สมมูลกับข้อความ ∃x∀y[( xy = 0 ∧ x ≠ 0) ∧ y ≠ 0]

สมมูลและนิเสธ

สรุปได้ว่า ข้อความทั้งสองสมมูลกัน

**เราสมมติ p q r เพื่อให้มองได้ง่ายขึ้นไม่สับสน

2.) นิเสธของข้อความ ∃x∀y[xy < 0 → (x < 0 ∨ y < 0)] คือ

∀x∃y[(xy < 0) ∧(x ≥ 0 ∧ y ≥ 0)] 

วิธีตรวจสอบ

ดังนั้น ข้อความข้างต้นเป็นจริง

3.) นิเสธของข้อความ ∃x[(∼P(x)) ∧ Q(x) ∧ (∼R(x))] คือข้อความ ∀x[Q(x) → (P(x) ∨ R(x))]

วิธีตรวจสอบ

สรุป

สมมูลและนิเสธในบทความนี้จะคล้ายๆกับรูปแบบการสมมูลของประพจน์ที่เราเคยเรียนก่อนหน้า แค่เพิ่มตัวบ่งปริมาณเข้าไป วิธีการตรวจสอบว่าเป็นนิเสธหรือไม่เราก็จะเอาการสมมูลของประพจน์เข้ามาช่วยแค่นั้นเอง

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ going to / will ในการสร้างประโยค

การใช้ going to / will ในการสร้างประโยค เกริ่นนำเกริ่นใจ   ภาพใหญ่ของ Will และ Be going to การจะเข้าใจอะไรได้อย่างมั่นใจและคล่องตามากขึ้น เราในฐานะผู้เรียนรู้ควรที่จะต้องเห็นภาพรวมทั้งหมดก่อน โดย Will เนี่ย อยู่ในตระกูล Auxiliary verb หรือ Helping verb

Profile where + preposition P6

การใช้ประโยค Where’s the + (Building) + ? It’s + (Preposition Of Place)

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้ครูจะพาทุกคนไปเรียนรู้เกี่ยวกับ ประโยค การถามทิศทาง แต่เอ้ะ Where is the building? แปลว่า ตึกอยู่ที่ไหน ประโยคนี้เป็นการถามทางแบบห้วนๆ ที่ใช้กับคนที่เราคุ้นชินหรือคนที่เรารู้จัก แต่หากนักเรียนต้องอยู่ในสถานการณ์ที่ต้องถามกับคนแปลกหน้าโดยเฉพาะฝรั่ง คงต้องมาฝึกถามให้สุภาพมากขึ้น ดังนั้นจึงต้องมีการเกริ่นขึ้นก่อนที่เราจะถามนั่นเองค่ะ ซึ่งนักเรียนที่รักทุกคนได้เรียนรู้ในบทเรียนนี้นะคะ ถ้าพร้อมแล้วก็ไปลุยกันเลย รูปแบบการถามทิศทาง   โครงสร้างประโยคถามแบบตรงๆ (Direct Question) “

หลักการของอัตราส่วนที่เท่ากัน

หลักการของอัตราส่วนที่เท่ากัน

ในบทความนี้เราจะได้เรียนรู้วิธีการในการหาค่าตัวแปรในการใช้สัดส่วน สามารถมารถนำไปประยุกต์ใช้กับการแก้โจทย์ปัญหาในชีวิตจริงได้ พิจารณาสิ่งที่ต้องการแสดงการเปรียบเทียบโดยการเขียนเป็นอัตราส่วนสองอัตราส่วนอย่างเป็นลำดับและหาค่าของตัวแปรได้

ระยะห่างของเส้นตรง

ระยะห่างของเส้นตรง

ระยะห่างของเส้นตรง ระยะห่างของเส้นตรง มีทั้งระยะห่างระหว่างจุดกับเส้นตรง และระหว่างเส้นตรงสองเส้นที่ขนานกัน ซึ่งจากบทความเรื่องเส้นตรง น้องๆพอจะทราบแล้วว่าเส้นตรงสองเส้นที่ขนานกันความชันจะเท่ากัน ในบทความนี้น้องๆจะทราบวิธีการหาระยะห่างของเส้นตรงที่ขนานกันด้วยซึ่งสามารถประยุกต์ใช้ในการหาสมการเส้นตรงได้ด้วย ระยะห่างระหว่างเส้นตรงกับจุด จากรูปจะได้ว่า  โดยที่ A, B และ C เป็นค่าคงที่ และ A, B ไม่เป็นศูนย์พร้อมกัน ตัวอย่าง1  หาระยะห่างระหว่างจุด (1, 5) และเส้นตรง 2x

การใช้พจนานุกรม เรียนรู้วิธีหาคำให้เจอได้อย่างทันใจ

​พจนานุกรม มาจากคำภาษาบาลีว่า วจน (อ่านว่า วะ-จะ-นะ) ภาษาไทยแผลงเป็น พจน์ แปลว่า คำ คำพูด ถ้อยคำ กับคำว่า อนุกรม แปลว่า ลำดับ เมื่อรวมกันแล้วพจนานุกรมจึงหมายถึงหนังสือที่รวบรวมคำโดยจัดเรียงคำตามลำดับตัวอักษร แต่ด้วยความที่คำในภาษาไทยของเรานั้นมีมากมาย ทำให้น้อง ๆ หลายคนอาจจะมีท้อใจบ้างเมื่อเห็นความหนาของเล่มพจนานุกรม ไม่รู้จะหาคำที่ต้องการได้อย่างไร บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ถึงวิธี การใช้พจนานุกรม

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1