ลำดับเลขคณิต

ลำดับเลขคณิต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ลำดับเลขคณิต

ลำดับเลขคณิต คือลำดับที่มีค่าเพิ่มขึ้นหรือลดลงอย่างคงที่ โดยจำนวนที่เพิ่มขึ้นหรือลดลงนี้เราเรียกว่าผลต่างร่วม แทนด้วยสัญลักษณ์ d  โดยที่ d = พจน์ขวา – พจน์ซ้าย

การเขียนลำดับเราจะเขียนแทนด้วย  ลำดับเลขคณิต  โดยที่ a_n คือพจน์ทั่วไปหรือเรียกอีกอย่างว่า พจน์สุดท้ายนั่นเอง

 

การหาพจน์ทั่วไปของลำดับเลขคณิต

พจน์ที่1 \rightarrow n = 1      ;       a_{1}=a_{1}

พจน์ที่2 \rightarrow n = 2     ;       a_{2}=a_{1}+d

พจน์ที่3 \rightarrow n = 3     ;       a_{3}=a_{2}+d+d =a_{2}+2d

                                              =a_{1}+d+d

.                                              =a_{1}+2d

พจน์ที่ n \rightarrow n = n     ;      a_{n}=a_{n-1}+d

ลำดับเลขคณิต

ดังนั้น  สูตรในการหาพจน์ทั่วไปของลำดับเลขคณิต

ลำดับเลขคณิต

 

วิธีการแก้โจทย์ปัญหาที่เกี่ยวกับลำดับเลขคณิต

  1. ต้องรู้ว่าโจทย์ถามหาอะไร จากนั้นเขียนสิ่งที่โจทย์ต้องการไว้ เช่น โจทย์ต้องการหาพจน์ที่ 5 เราจะเขียน a_5=a_1+4d จากนั้นเราก็จะรู้แล้วว่าเราต้องหาอะไรเพื่อให้สมการมันสมบูรณ์และได้คำตอบที่ต้องการ
  2. ดูว่าโจทย์ให้อะไรมาบ้าง โจทย์บางโจทย์อาจจะไม่ให้มาแบบตรงๆ เช่น 1, 3, 5,7,… สิ่งที่โจทย์ให้มาคือ a_1 และ d จะเห็นว่าโจทย์ไม่ได้ให้ d มาตรงๆแต่เราต้องสังเกตเอง
  3. ใช้สิ่งที่โจทย์มา ในการหาสิ่งที่เราต้องการในข้อ 1.

จากข้อ 1-3 ถ้าทำครบตามนี้เราก็จะได้คำตอบตามต้องการแล้ว ทั้งนี้ต้องอาศัยการสังเกต และการฝึกทำบ่อยๆให้ชินด้วย

 

ตัวอย่างลำดับเลขคณิต

โจทย์ลำดับเลขคณิตนั้น สามารถพลิกแพลงได้เยอะมาก ไม่ว่าจะเป็น หาพจน์ที่ n หาว่าค่าที่กำหนดให้นั้นคือพจน์ที่เท่าไหร่ และอีกมากมาย เราไปดูตัวอย่างกันเลย

1. จงหาพจน์ทั่วไป (a_{n}) ของ 5, 7, 9, 11, …

จากโจทย์ \inline a_{1}=5         \inline d=7-5=2

จากสูตร a_{n}=a_{1}+(n-1)d

จะได้ a_{n}=5+(n-1)(2)

                =5+2n-2

                =3+2n

ดังนั้น a_{n}=3+2n

2. ให้ a และ b เป็นจำนวนจริงบวก ถ้า a, 10, b, 20, … เป็นลำดับเลขคณิตจงหาพจน์ที่ 10 , a และ b

จากสูตร a_{n}=a_{1}+(n-1)d

10=a_{1}+d       \cdots (1)

20=a_{1}+3d       \cdots (2)

(2) – (1) : 10=2d

d=5

แทน \inline d=5 ใน (1) : \inline 10=a_{1}+5

\inline a_{1}=5

\therefore a=5 และ b=5+2(5)=15

ดังนั้น a_{10}=5+9(5)

                  =50

3. ถ้าพจน์ที่ 5 และพจน์ที่ 10 ของลำดับเลขคณิตเป็น 14 และ 29 ตามลำดับ แล้วพจน์ที่ 99 เท่ากับเท่าใด

จากสูตร a_{n}=a_{1}+(n-1)d

พจน์ที่ 5 จะได้ว่า  \inline a_{5}=14=a_{1}+4d       \cdots (1)

พจน์ที่ 10 จะได้ว่า  \inline a_{10}=29=a_{1}+9d       \cdots (2)

(2) – (1) : 15=5d

d=3

แทน \inline d=3 ใน (1) : \inline 14=a_{1}+4(3)

\inline a_{1}=14-12=5

\therefore a_{1}=2 และ \inline d=3

พจน์ที่ 99

a_{99}=a_{1}+98(d)

=2+98(3)

=296

4. ลำดับ -24, -15, -6, 3, 12, 21, … , 1776 มีกี่พจน์ (O-net 54)

จากโจทย์ d=-15-(-24)=9 และ a_{1}=-24

“พจน์สุดท้าย (พจน์ที่ n ) มีค่าเท่ากับ 1776”

หา n โดยที่ a_{n}=1776

1776=-24+(n-1)(9)

1776=-24+9n-9

1776+33=9n

n=\frac{1809}{9}=201

ดังนั้น ลำดับดังกล่าวมี 201 พจน์

5. พจน์ที่ 60 ของลำดับเลขคณิต x + 2 , 2x – 5, 2x + 2, …เท่ากับเท่าไหร่

จากโจทย์สิ่งที่ต้องการหาคือ a_{60}

สื่งที่โจทย์ให้มาคือ พจน์แรก และ

สิ่งแรกที่ต้องทำคือหา x โดยใช้สูตรลำดับเลขคณิต

จาก d = พจน์ซ้าย – พจน์ขวา

d = 2x – 5 – (x + 2) = 2x + 2 – (2x – 5)

x – 7 = 7

x = 14

เมื่อนำค่า x ที่หาได้ไปแทน จะได้ลำดับเลขคณิต ดังนี้ 16, 23, 30,…

จากลำดับข้างต้นจะได้ d = 23 – 16 = 7

หา พจน์ที่ 60

a_{60}=16+59(7)=16+413=429

ดังนั้น พจน์ที่ 60 เท่ากับ 429

6. ลำดับเลขคณิต 4 จำนวนที่อยู่กลางระหว่าง 4 กับ 49 คือจำนวนใดบ้าง

ลองเขียนอนุกรมจะได้ 4, a, b, c, d, 49

จากโจทย์สิ่งที่เรารู้คือ พจน์แรก และพจน์สุดท้าย ดังนั้นเราามารถหา d จากพจน์สุดท้ายได้ โดยใช้สูตรลำดับเลขคณิต

ได้เป็น 

49 = 4 + 5d (เนื่องจาก 49 คือพจน์ที่ 6 ดังนั้น n -1 = 5)

45 = 5d

d = 9

เขียนเป็นลำดับเลขคณิตได้เป็น 4, 13, 22, 31, 40, 49

ดังนั้น 4 พจน์ที่อยู่กลางระหว่าง 4 กับ 29 คือ 13, 22, 31, 40 ตามลำดับ

 

ตัวอย่างโจทย์ปัญหาเกี่ยวกับ ลำดับเลขคณิต

1.) แป้งกู้เงินมาจำนวนหนึ่ง โดยจ่ายเงินเดือนแรก 200 บาท และเดือนถัดไปแป้งต้องจ่ายเพิ่มทุกเดือนเดือนละ 50 บาท หลังจากชำระหมดพบว่าเดือนสุดท้ายแป้งจ่ายเงินไป 950 บาท แป้งจ่ายเงินไปทั้งสิ้นกี่เดือน

วิธีทำ

1. หาว่าโจทย์ต้องการอะไร

จะเห็นว่า โจทย์ถามว่าจ่ายเงินไปกี่เดือน นั่นก็คือหาจำนวนเดือน หรือ หา n นั่นเอง

เราจะหา n ได้จากสูตร ลำดับเลขคณิต ดังนั้นเราต้องหา a_n,a_1 และ d

2. ดูว่าโจทย์ให้อะไรมาบ้าง

จากโจทย์ สามารถเขียนได้เป็น 200, 250, 300,…, 950

จะเห็นว่า โจทย์ให้ a_1=200 , d = 50 และ a_n=950

3. นำข้อ 2 ไปเติมในสูตรที่เราเขียนไว้ จะได้ว่า

a_n=a_1+(n-1)d

950=200+(n-1)(50)

950=200+50n – 50

950 = 150 + 50n

800 = 50n

n      =  16

ดังนั้น แป้งจ่ายเงินไปทั้งหมด 16 เดือน

 

2.) แป้งมีเงินในเก็บ 20 บาท และจะเก็บเพิ่มทุกวันวันละ 3 บาท ปริมมีเงินในธนาคาร 300 บาท และจะฝากเงินเพิ่มวันละ 20 บาททุกวัน ในวันที่ แป้งมีเงินในกระปุก 44 บาท ปริมจะมีเงินในธนาคารกี่บาท

วิธีทำ 1. โจทย์ต้องการหา จำนวนเงินของปริมในวันที่(n)แป้งมีเงิน 44 บาท นั่นคือ เราต้องหาจำนวนวันที่แป้งมีเงิน 44 บาท (หา n) จากนั้น หาว่าปริมมีเงินเท่าไหร่ในวันที่ n

2. สิ่งที่โจทย์ให้มา

20, 23, 26, …, 44 (การเก็บเงินของแป้ง) d = 3

300, 320,340, … (การเก็บเงินในธนาคารของปริม) d = 20

3. นำข้อมูลจากข้อ 2 มาแก้โจทย์

หาว่า วันที่แป้งมีเงิน 44 บาท คือวันที่เท่าไหร่

44=20+(n-1)(3) (สูตรลำดับเลขคณิต)

44=20+3n -3

44=17 + 3n

27 = 3n

n = 9

ดังนั้น วันที่ 9 แป้งมีเงินเก็บ 44 บาท

จากนั้นเราจะหาว่า วันที่ 9 ปริมมีเงินเก็บเท่าไหร่โดยใช้สูตรลำดับเลขคณิต

a_9=300+(8-1)(20)

a_9=300+7(20)=300+140=440

ดังนั้นวันที่แป้งมีเงินเก็บ 44 บาท ปริมจะมีเงินทั้งหมด 440 บาท

 

 

 

วิดีโอเพิ่มเติมเกี่ยวกับลำดับเลขคณิต

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

จำนวนตรรกยะ

จำนวนตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนตรรกยะ และการเปลี่ยนเศษส่วนเป็นทศนิยมหรือทศนิยมเป็นเศษส่วน

เรียนรู้ตัวบทและคุณค่าในสังข์ทอง ตอน กำเนิดพระสังข์

สังข์ทอง เป็นวรรณคดีที่มีมาตั้งแต่สมัยโบราณแต่ได้รับความนิยมมาจนถึงปัจจุบัน เพราะถูกนำไปปรับปรุงเป็นบทละครovdในรัชกาลที่ 2 จนได้มาอยู่ในแบบเรียนภาษาไทย นอกจากนี้หนึ่งในตอนที่สำคัญอย่างตอน กำเนิดพระสังข์ นี้ก็ยังเป็นอีกตอนที่สำคัญเพราะมักถูกหยิบยกมาทำเป็นนิทานสำหรับเด็ก แถมยังเคยได้รับรางวัลหนังสือดีสำหรับเด็ก และได้ชื่อว่าเป็นหนังสือดีสำหรับเด็กและเยาวชนในปี 2561 อีกด้วย บทเรียนในวันนี้จะพาน้อง ๆ ไปศึกษาตัวบทเด่น ๆ ที่น่าสนใจและคุณค่าในตอนนี้เพื่อไขข้อข้องใจว่าทำไมวรรณคดีที่ถูกแต่งขึ้นเมื่อหลายร้อยปีก่อนถึงมีคุณค่าและอิทธิพลกับเด็กไทย ถ้าพร้อมแล้วเราไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ตัวบทเด่น ๆ     ถอดความ กล่าวถึงพระสังข์เมื่อตอนเกิดว่าเป็นเทพลงมาเกิด

วัฒนธรรมกับภาษา

วัฒนธรรมกับภาษา ความสัมพันธ์ของสองสิ่งที่มนุษย์สร้างขึ้น

มนุษย์ก่อให้เกิดภาษา และภาษาก็ก่อให้เกิดวัฒนธรรม น้อง ๆ สงสัยกันหรือไม่คะว่ามนุษย์ วัฒนธรรมกับภาษา เกี่ยวข้องและเชื่อมโยงกันได้อย่างไร บทเรียนในวันนี้จะพาน้อง ๆ ไปเจาะลึกถึงเรื่องราวที่ว่านี่กันค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้กันเลยค่ะ   มนุษย์ วัฒนธรรมกับภาษา   วัฒนธรรม คืออะไร วัฒนธรรมเป็นสิ่งที่มนุษย์สร้างขึ้น รากศัพท์ในภาษาละตินมีความหมายว่าการเพาะปลูก แต่ไม่ได้ใช้แค่ในเชิงเกษตรกรรม แต่จะรวมไปถึงการปลูกฝังในด้านต่าง ๆ ทั้งให้การศึกษา ความเคารพ ซึ่งทั้งหมดนี้ล้วนเป็นสิ่งที่มนุษย์เปลี่ยนแปลง

ศิลาจารึกหลักที่ 1 ถอดความหมายพร้อมเรียนรู้คุณค่าในเรื่อง

ศิลาจารึกหลักที่ 1มีความเป็นมาอย่างไร น้อง ๆ ก็คงจะได้เรียนรู้กันไปแล้ว วันนี้เรื่องที่เราจะมาศึกษากันต่อก็คือเนื้อหาเด่น ๆ ที่น่าสนใจและคุณค่าที่อยู่ในศิลาจารึกหลักที่ 1 กันค่ะ ไปดูพร้อมๆ กันเลยว่าในศิลาจารึกจะบันทึกเรื่องเล่าอะไรไว้บ้าง และมีคุณค่าด้านใด   ศิลาจารึกหลักที่ 1 : ตัวบทที่น่าสนใจ       พ่อกูชื่อศรีอินทราทิตย์ แม่กูชื่อนางเสือง พี่กูชื่อบานเมือง ตูมีพี่น้องท้องเดียวห้าคน

หลักการคูณทศนิยม พร้อมตัวอย่างที่เข้าใจง่าย

บทความนี้จะพาน้อง ๆมาทำความเข้าใจกับหลักการคูณทศนิยมในแต่ละรูปแบบ พร้อมทั้งอธิบายหลักการและยกตัวอย่างวิธีคิดในแต่ละรูปแบบของการคูณทศนิยม ให้น้อง ๆสามารถนำไปปรับใช้กับการหาคำตอบจากแบบฝึกหัดในห้องเรียนได้จริง

Suggesting Profile

การใช้ประโยคคำสั่ง คำขอร้อง และคำแนะนำง่ายๆ

  สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ การใช้ประโยคคำสั่ง คำขอร้อง และคำแนะนำง่ายๆ “Easy Imperative Sentences” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันเลย รูปแบบและโครงสร้างประโยคคำสั่ง Imperative sentence     Imperative sentence ในรูปแบบประโยคบอกเล่าจะ ใช้ Verb base form (V.1)

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1