ลำดับเรขาคณิต

ลำดับเรขาคณิต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ลำดับเรขาคณิต

ลำดับเรขาคณิต คือ ลำดับที่มีจำนวนเพิ่มขึ้นหรือลดลงอย่างคงที่เป็นจำนวนเท่า ซึ่งจำนวนที่เพิ่มขึ้นหรือลดลงนั้นเรียกว่า อัตราส่วนร่วม เขียนแทนด้วย r

โดยที่ r = พจน์ขวาหารด้วยพจน์ซ้าย

การเขียนลำดับเราจะเขียนแทนด้วย  ลำดับเลขคณิต  โดยที่ a_n คือพจน์ทั่วไปหรือเรียกอีกอย่างว่า พจน์สุดท้ายนั่นเอง

ตัวอย่างของลำดับเรขาคณิต

2, 4, 8, 16, 32, …

จะได้ว่า  อัตราส่วน a_{2} ต่อ a_{1}=\frac{a_{2}}{a_{1}}=\frac{4}{2}=2

อัตราส่วน a_{3} ต่อ a_{2}=\frac{a_{3}}{a_{2}}=\frac{8}{4}=2

\therefore2 คือ อัตราส่วนร่วมของลำดับเรขาคณิตข้างต้น

 

พจน์ทั่วไปของลำดับเรขาคณิต

การหาพจน์ทั่วไป ก็คือการหาค่าของพจน์สุดท้ายหรือ a_n นั่นเอง

ทำไมเราถึงต้องรู้วิธีหาพจน์ทั่วไปล่ะ???  เพราะว่าถ้าน้องๆรู้พจน์ทั่วไปแล้ว น้องอยากได้ค่าของพจน์ไหนน้องก็สามารถแทน n เข้าไปได้เลยนั่นเอง

พิจารณา  พจน์ที่1 : n=1\rightarrow a_{1}=a_{1}

พจน์ที่2 : n=2\rightarrow a_{2}=a_{1}r

พจน์ที่3 : n=3\rightarrow a_{3}=a_{2}r=a_{1}r^{2}

                      \vdots

พจน์ที่n \rightarrow a_{n}=a_{n-1}r

ลำดับเรขาคณิต

ดังนั้น  พจน์ทั่วไปของลำดับเรขาคณิตคือ

a_{n}=a_{1}r^{n-1}

ถ้า  r = 1 จะได้ว่า a_n=a_1 นั่นคือ ทุกพจน์ของลำดับจะมีค่าเท่ากัน เราจะเรียกลำดับนี้ว่า ลำดับคงตัว

เช่น ลำดับของ 2, 2, 2, 2, …, 2

วิธีการแก้โจทย์ปัญหาที่เกี่ยวกับลำดับเรขาคณิต

  1. ต้องรู้ว่าโจทย์ถามหาอะไร จากนั้นเขียนสิ่งที่โจทย์ต้องการไว้ เช่น โจทย์ต้องการหาพจน์ที่ 5 เราจะเขียน a_5=a_1r^{(n-1)} จากนั้นเราก็จะรู้แล้วว่าเราต้องหาอะไรเพื่อให้สมการมันสมบูรณ์และได้คำตอบที่ต้องการ
  2. ดูว่าโจทย์ให้อะไรมาบ้าง โจทย์บางโจทย์อาจจะไม่ให้มาแบบตรงๆ เช่น 1, 3, 5,7,… สิ่งที่โจทย์ให้มาคือ a_1 และ r จะเห็นว่าโจทย์ไม่ได้ให้ r มาตรงๆแต่เราต้องสังเกตเอง
  3. ใช้สิ่งที่โจทย์มา ในการหาสิ่งที่เราต้องการในข้อ 1.

จากข้อ 1-3 ถ้าทำครบตามนี้เราก็จะได้คำตอบตามต้องการแล้ว ทั้งนี้ต้องอาศัยการสังเกต และการฝึกทำบ่อยๆให้ชินด้วย

เราลองมาดูโจทย์เกี่ยวกับลำดับเรขาคณิตกันค่ะ

ตัวอย่างโจทย์เกี่ยวกับลำดับเรขาคณิต

1) หาพจน์ที่ 20 ของ 1, 4, 16, …

วิธีทำ

โจทย์ต้องการพจน์ที่ 20 นั่นคือ a_{20}=a_1r^{19}

จากโจทย์ สิ่งที่โจทย์ให้มาคือ  a_{1}=1    และ อัตราส่วนร่วม    r=\frac{4}{1}=4

ดังนั้นจะได้

a_{20}=a_{1}r^{19}=1(4)^{19}=4^{19}

 

2) ลำดับเรขาคณิตมี a_{1}=\frac{1}{4} , a_{7}=8 จงหา a_{13}

วิธีทำ โจทย์ต้องการหา a_{13}=a_1r^{12}

สิ่งที่โจทย์ให้มาคือa_1 และ a_7

จะได้ว่า

a_{7}=a_{1}r^{6}=8

\frac{1}{4}(r^{6})=8

r^{6} = 32

r=\sqrt[6]{32}

จากที่เราได้ r มาแล้ว เราสามารถหาพจน์ที่ 13 ได้แล้ว จะได้ว่า

a_{12}=a_{1}r^{12}

.     =\frac{1}{4}(\sqrt[6]{32})^{12}

.      =\frac{1}{4}(32)(32)

.     =8(32)

.     = 256

ดังนั้น  a_{13} = 256

3) ให้ลำดับเรขาคณิตชุดหนึ่งมีอัตราส่วนร่วมเป็น -2 ถ้า a_{4}=4 แล้ว a_{1} มีค่าเท่าใด

วิธีทำ

จากโจทย์ r = -2 และ

a_{4}=4=a_{1}(-2)^{3}

4=a_{1}(-8)

a_{1}=-\frac{1}{2}

 

4) ลำดับ 2, 10, 50, … , 1250 มีกี่พจน์

วิธีทำ โจทย์ต้องการทราบว่ามีกี่พจน์ นั่นคือ ต้องการทราบค่า n

สิ่งที่โจทย์ให้มา

จากโจทย์ \inline a_{1}=2 และ r = \frac{10}{2} = 5

หา n โดยที่ a_{n}=1250=a_{1}r^{n-1}

1250=2(n)^{n-1}

5^{n-1}=625

5^{n-1}=5^{4}

\therefore n-1=4\rightarrow n=5

ดังนั้น ลำดับข้างต้นมี 5 พจน์

5.) กำหนดให้ 32, x, y, 4 เป็นลำดับเรขาคณิต จงหาค่า x + y

วิธีทำ จากโจทย์ สิ่งที่โจทย์ให้มาคือค่าของพจน์ที่ 1 กับพจน์ที่ 4 หรือพจน์สุดท้ายนั่นเอง

การที่เราจะหาค่า x และ y ได้นั้น เราต้องหาค่า r หรืออัตราส่วนร่วม และค่าของพจน์ที่ 1 ซึ่งโจทย์ให้มาอยู่แล้ว

ดังนั้นเราจะหา r จากพจน์สุดท้าย จะได้ว่า

4=32r^3

r^3= \frac{4}{32}

r^3=\frac{1}{8}

r=\frac{1}{2}

หลังจากที่เราได้ค่า r มาแล้วเราจะสามารถหาพจน์ที่ 2และ 3 ได้แล้ว

นั่นคือ x = 32(\frac{1}{2})=16  และ y = 16(\frac{1}{2})=8

โจทย์ต้องการ x + y ดังนั้น จะได้ x + y = 16 + 8 = 24

6.) ให้ sinθ, tanθ, tanθ·secθ, … เป็นลำดับเรขาคณิต แล้วพจน์ที่ 10 ของลำดับเรขาคณิตนี้เท่ากับเท่าใด

วิธีทำ สิ่งที่โจทย์ต้องการคือ a_{10}=a_1r^9

สิ่งที่โจทย์ให้มาคือ a_1=\mathrm{sin\theta } และ r={\frac{tan\theta}{sin\theta }=\frac{\frac{sin\theta}{cos\theta}}{sin\theta}= \frac{1}{cos\theta}=sec\theta}

หาพจน์ที่ 10 

a_{10}=sin\theta sec^9\theta

ตัวอย่างลำดับเรขาคณิต ในรูปของโจทย์ปัญหา

1.) เด็ก 3 คน มีอายุ 1, 5, 13 ปี จงหาว่าอีกกี่ปี อายุของเด็กทั้งสามจะเรียงกันเป็นลำดับเรขาคณิต

วิธีทำ 

ให้ x แทนจำนวนปีที่จะทำให้อายุของเด็กทั้งสามเรียงกันเป็นลำดับเรขาคณิต

จะได้ว่า 1+x, 5+x, 13+x เป็นลำดับเรขาคณิต

หา x  

จากที่เรารู้ว่า r คือ พจน์ขวาหารด้วยพจน์ซ้าย และเป็นค่าคงที่ จะได้ว่า

\frac{5+x}{1+x}=\frac{13+x}{5+x}

(5+x)²  = (1+x)(13+x)

25+10x+x² = 13 + 14x + x²

4x = 12

x   = 3

ดังนั้น อีก 3 ปี เด็กสามคนจะมีอายุเรียงกันเป็นลำดับเรขาคณิต

 

2.) ถังใบหนึ่งบรรจุน้ำมัน 240 ลิตร ตักน้ำมันออก \frac{1}{4} ลิตรของปริมาณน้ำมันที่เหลืออยู่ อยากทราบว่าถ้าตักครบ 6 ครั้งแล้วจะเหลือน้ำมันกี่ลิตร

วิธีทำ โจทย์ถามน้ำมันที่เหลืออยู่ดังนั้น ถ้าตักออก \frac{1}{4} ก็จะเหลือน้ำมัน \frac{3}{4} ของน้ำมันที่เหลืออยู่ก่อนหน้า นั่นคือ

เดิมมีน้ำมัน 240 ลิตร

ตักออกครั้งที่1 เหลือน้ำมัน 240(\frac{3}{4})

ตักออกครั้งที่ 2 เหลือน้ำมัน 240(\frac{3}{4})^{2}

ตักออกครั้งที่3 เหลือน้ำมัน 240(\frac{3}{4})^{3}

นำมาเขียนเป็นลำดับเรขาคณิตได้ดังนี้

240, 240(\frac{3}{4}), 240(\frac{3}{4})^{2}, 240(\frac{3}{4})^{3}, …

จากลำดับจะเห็นว่า a_1=240 และ r=\frac{3}{4}

ดังนั้นถ้าตักออก6 ครั้งก็คือ หา a_7 

a_7=240(\frac{3}{4})^6

 

3.) ลูกบอลตกจากที่สูง 30 ฟุต ถ้าทุกครั้งที่ลูกบอลตกกระทบพื้นจะกระดอนขึ้นไป \frac{4}{5}ของระยะทางที่ลูกบอลตกลงมา จงหาความสูงของลูกบอลจากพื้นเมื่อลูกบอลตกกระทบพื้นครั้งที่ 5

วิธีทำ จากโจทย์ 

ความสูงของบอลตอนยังไม่ตก คือ 30 ฟุต

ความสูงเมื่อลูกบอลกระทบพื้นครั้งที่1 คือ  30(\frac{4}{5}) ฟุต

ความสูงเมื่อลูกบอลกระทบพื้นครั้งที่2 คือ 30(\frac{4}{5})² ฟุต

ความสูงเมื่อลูกบอลกระทบพื้นครั้งที่3 คือ 30(\frac{4}{5})³ ฟุต

เขียนเป็นลำดับเรขาคณิตได้ดังนี้

30, 30(\frac{4}{5}), 30(\frac{4}{5})², 30(\frac{4}{5})³, …

จะได้ว่า  a_1 = 30 และ r=\frac{4}{5}

จากโจทย์ต้องการความสูงเมื่อลูกบอลกระทบพื้นครั้งที่ 5 นั่นคือ หา a_6

หา a_6 จากสิ่งที่โจทย์ให้มาและสูตรลำดับเรขาคณิต จะได้

a_6=30(\frac{4}{5})^5=30(\frac{1024}{3125})=\frac{30720}{3125}\approx 9.83

ดังนั้น ความสูงของลูกบอลเมื่อลูกบอลกระทบพื้นครั้งที่ 5 มีคา่ประมาณ 9.83 ฟุต

 วิดีโอเพิ่มเติมเกี่ยวกับ ลำดับเรขาคณิต

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Profile of Signal Words

การใช้ Signal Words ในภาษาอังกฤษ

  บทนำ   สวัสดีค่ะนักเรียน ม.1 ทุกคน วันนี้ครูมีเทคนิคที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วยการใช้ คำลำดับความสำคัญ (Signal Words) ในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay คือเรียงความเพราะฉะนั้นจะยาวกว่า Paragraph ที่เป็นเพียงย่อหน้าหนึ่งเท่านั้นนั่นเองค่ะ

โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว

โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว

ขั้นตอนของการแก้โจทย์ปัญหา บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย แต่ก่อนที่น้องๆจะเรียนเรื่องนี้อย่าลืมทบทวน การแก้สมการเชิงเส้นตัวแปรเดียว กันก่อนนะคะ ถ้าน้องๆพร้อมแล้วเรามาศึกษาขั้นตอนของการแก้โจทย์ปัญหาเกี่ยวกับสมการ ดังนี้               ขั้นที่ 1 วิเคราะห์โจทย์ว่ากำหนดอะไรให้บ้าง และให้หาอะไร               ขั้นที่ 2 กำหนดตัวแปรแทนสิ่งที่โจทย์ให้หาหรือแทนสิ่งที่เกี่ยวข้องกับสิ่งที่โจทย์ให้หา               ขั้นที่ 3 เขียนสมการตามเงื่อนไขของโจทย์               ขั้นที่

ป6การใช้ love, like, enjoy, hate ในการเเต่งประโยค

การใช้ love, like, enjoy, hate ในการเเต่งประโยค

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้  love, like, enjoy, hate ในการเเต่งประโยค หากพร้อมแล้วก็ไปลุยกันโลดเด้อ Let’s go!   โครงสร้าง: In my free time/ In my spare time,…     In my

การเก็บรวบรวมข้อมูล

การเก็บรวบรวมข้อมูล

การเก็บรวบรวมข้อมูล การเก็บรวบรวมข้อมูล เป็นขั้นตอนหนึ่งที่มีความสำคัญมากทางสถิติ เพื่อใช้ในการตัดสินใจได้อย่างถูกต้องและแม่นยำ โดยข้อมูลที่ได้มีหลากหลายรูปแบบ อาจจะเป็นตัวเลข ข้อความ หรือรูปภาพ ซึ่งเป็นข้อมูลที่ตอบสนองวัตถุประสงค์หรือเป็นเรื่องที่เราสนใจ โดยสามารถจำแนกข้อมูลได้ตามลักษณะและแหล่งที่มาของข้อมูล ได้แก่ จำแนกตามลักษณะของข้อมูล แบ่งได้เป็น 2 ประเภท คือ ข้อมูลเชิงปริมาณ (Quantitative Data) คือ ข้อมูลที่วัดค่าได้ แสดงเป็นตัวเลข ซึ่งสามารถนำมาใช้เปรียบเทียบกันได้โดยตรง เช่น จำนวนบุตรในครอบครัว,

พระบรมราโชวาท

พระบรมราโชวาท ศึกษาตัวบทและคุณค่าที่อยู่ในวรรณคดี

พระบรมราโชวาท เป็นวรรณคดีไทยที่ทรงคุณค่าอีกเรื่องหนึ่ง ที่มีมาตั้งแต่สมัยรัชกาลที่ 5 หลังจากที่ได้เรียนเกี่ยวกับประวัติความเป็นมาและเรื่องย่อกันไปแล้ว บทเรียนในวันนี้ก็จะพาน้อง ๆ ไปเจาะลึกถึงตัวบทเด่น ๆ ว่ามีใจความอย่างไร รวมถึงศึกษาคุณค่าที่สอดแทรกอยู่ในเรื่องอีกด้วย ถ้าพร้อมแล้วไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ   ตัวบทเด่น ๆ ในพระบรมราโชวาท   ถอดความ ความตอนนี้กล่าวถึงพระประสงค์ของรัชกาลที่ 5 ที่ไม่ต้องการให้พระโอรสใช้คำนำหน้าเป็นเจ้า แต่ให้ใช้คำนำหน้าเป็นนายหรืออาจให้ใช้คำลงท้ายแบบขุนนางชั้นสูงได้เท่านั้น เพราะเมื่อประกาศให้คนรู้ว่าเป็นใครสิ่งที่จะตามมาก็คือการต้องรักษายศไว้

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1