ลำดับเรขาคณิต

ลำดับเรขาคณิต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ลำดับเรขาคณิต

ลำดับเรขาคณิต คือ ลำดับที่มีจำนวนเพิ่มขึ้นหรือลดลงอย่างคงที่เป็นจำนวนเท่า ซึ่งจำนวนที่เพิ่มขึ้นหรือลดลงนั้นเรียกว่า อัตราส่วนร่วม เขียนแทนด้วย r

โดยที่ r = พจน์ขวาหารด้วยพจน์ซ้าย

การเขียนลำดับเราจะเขียนแทนด้วย  ลำดับเลขคณิต  โดยที่ a_n คือพจน์ทั่วไปหรือเรียกอีกอย่างว่า พจน์สุดท้ายนั่นเอง

ตัวอย่างของลำดับเรขาคณิต

2, 4, 8, 16, 32, …

จะได้ว่า  อัตราส่วน a_{2} ต่อ a_{1}=\frac{a_{2}}{a_{1}}=\frac{4}{2}=2

อัตราส่วน a_{3} ต่อ a_{2}=\frac{a_{3}}{a_{2}}=\frac{8}{4}=2

\therefore2 คือ อัตราส่วนร่วมของลำดับเรขาคณิตข้างต้น

 

พจน์ทั่วไปของลำดับเรขาคณิต

การหาพจน์ทั่วไป ก็คือการหาค่าของพจน์สุดท้ายหรือ a_n นั่นเอง

ทำไมเราถึงต้องรู้วิธีหาพจน์ทั่วไปล่ะ???  เพราะว่าถ้าน้องๆรู้พจน์ทั่วไปแล้ว น้องอยากได้ค่าของพจน์ไหนน้องก็สามารถแทน n เข้าไปได้เลยนั่นเอง

พิจารณา  พจน์ที่1 : n=1\rightarrow a_{1}=a_{1}

พจน์ที่2 : n=2\rightarrow a_{2}=a_{1}r

พจน์ที่3 : n=3\rightarrow a_{3}=a_{2}r=a_{1}r^{2}

                      \vdots

พจน์ที่n \rightarrow a_{n}=a_{n-1}r

ลำดับเรขาคณิต

ดังนั้น  พจน์ทั่วไปของลำดับเรขาคณิตคือ

a_{n}=a_{1}r^{n-1}

ถ้า  r = 1 จะได้ว่า a_n=a_1 นั่นคือ ทุกพจน์ของลำดับจะมีค่าเท่ากัน เราจะเรียกลำดับนี้ว่า ลำดับคงตัว

เช่น ลำดับของ 2, 2, 2, 2, …, 2

วิธีการแก้โจทย์ปัญหาที่เกี่ยวกับลำดับเรขาคณิต

  1. ต้องรู้ว่าโจทย์ถามหาอะไร จากนั้นเขียนสิ่งที่โจทย์ต้องการไว้ เช่น โจทย์ต้องการหาพจน์ที่ 5 เราจะเขียน a_5=a_1r^{(n-1)} จากนั้นเราก็จะรู้แล้วว่าเราต้องหาอะไรเพื่อให้สมการมันสมบูรณ์และได้คำตอบที่ต้องการ
  2. ดูว่าโจทย์ให้อะไรมาบ้าง โจทย์บางโจทย์อาจจะไม่ให้มาแบบตรงๆ เช่น 1, 3, 5,7,… สิ่งที่โจทย์ให้มาคือ a_1 และ r จะเห็นว่าโจทย์ไม่ได้ให้ r มาตรงๆแต่เราต้องสังเกตเอง
  3. ใช้สิ่งที่โจทย์มา ในการหาสิ่งที่เราต้องการในข้อ 1.

จากข้อ 1-3 ถ้าทำครบตามนี้เราก็จะได้คำตอบตามต้องการแล้ว ทั้งนี้ต้องอาศัยการสังเกต และการฝึกทำบ่อยๆให้ชินด้วย

เราลองมาดูโจทย์เกี่ยวกับลำดับเรขาคณิตกันค่ะ

ตัวอย่างโจทย์เกี่ยวกับลำดับเรขาคณิต

1) หาพจน์ที่ 20 ของ 1, 4, 16, …

วิธีทำ

โจทย์ต้องการพจน์ที่ 20 นั่นคือ a_{20}=a_1r^{19}

จากโจทย์ สิ่งที่โจทย์ให้มาคือ  a_{1}=1    และ อัตราส่วนร่วม    r=\frac{4}{1}=4

ดังนั้นจะได้

a_{20}=a_{1}r^{19}=1(4)^{19}=4^{19}

 

2) ลำดับเรขาคณิตมี a_{1}=\frac{1}{4} , a_{7}=8 จงหา a_{13}

วิธีทำ โจทย์ต้องการหา a_{13}=a_1r^{12}

สิ่งที่โจทย์ให้มาคือa_1 และ a_7

จะได้ว่า

a_{7}=a_{1}r^{6}=8

\frac{1}{4}(r^{6})=8

r^{6} = 32

r=\sqrt[6]{32}

จากที่เราได้ r มาแล้ว เราสามารถหาพจน์ที่ 13 ได้แล้ว จะได้ว่า

a_{12}=a_{1}r^{12}

.     =\frac{1}{4}(\sqrt[6]{32})^{12}

.      =\frac{1}{4}(32)(32)

.     =8(32)

.     = 256

ดังนั้น  a_{13} = 256

3) ให้ลำดับเรขาคณิตชุดหนึ่งมีอัตราส่วนร่วมเป็น -2 ถ้า a_{4}=4 แล้ว a_{1} มีค่าเท่าใด

วิธีทำ

จากโจทย์ r = -2 และ

a_{4}=4=a_{1}(-2)^{3}

4=a_{1}(-8)

a_{1}=-\frac{1}{2}

 

4) ลำดับ 2, 10, 50, … , 1250 มีกี่พจน์

วิธีทำ โจทย์ต้องการทราบว่ามีกี่พจน์ นั่นคือ ต้องการทราบค่า n

สิ่งที่โจทย์ให้มา

จากโจทย์ \inline a_{1}=2 และ r = \frac{10}{2} = 5

หา n โดยที่ a_{n}=1250=a_{1}r^{n-1}

1250=2(n)^{n-1}

5^{n-1}=625

5^{n-1}=5^{4}

\therefore n-1=4\rightarrow n=5

ดังนั้น ลำดับข้างต้นมี 5 พจน์

5.) กำหนดให้ 32, x, y, 4 เป็นลำดับเรขาคณิต จงหาค่า x + y

วิธีทำ จากโจทย์ สิ่งที่โจทย์ให้มาคือค่าของพจน์ที่ 1 กับพจน์ที่ 4 หรือพจน์สุดท้ายนั่นเอง

การที่เราจะหาค่า x และ y ได้นั้น เราต้องหาค่า r หรืออัตราส่วนร่วม และค่าของพจน์ที่ 1 ซึ่งโจทย์ให้มาอยู่แล้ว

ดังนั้นเราจะหา r จากพจน์สุดท้าย จะได้ว่า

4=32r^3

r^3= \frac{4}{32}

r^3=\frac{1}{8}

r=\frac{1}{2}

หลังจากที่เราได้ค่า r มาแล้วเราจะสามารถหาพจน์ที่ 2และ 3 ได้แล้ว

นั่นคือ x = 32(\frac{1}{2})=16  และ y = 16(\frac{1}{2})=8

โจทย์ต้องการ x + y ดังนั้น จะได้ x + y = 16 + 8 = 24

6.) ให้ sinθ, tanθ, tanθ·secθ, … เป็นลำดับเรขาคณิต แล้วพจน์ที่ 10 ของลำดับเรขาคณิตนี้เท่ากับเท่าใด

วิธีทำ สิ่งที่โจทย์ต้องการคือ a_{10}=a_1r^9

สิ่งที่โจทย์ให้มาคือ a_1=\mathrm{sin\theta } และ r={\frac{tan\theta}{sin\theta }=\frac{\frac{sin\theta}{cos\theta}}{sin\theta}= \frac{1}{cos\theta}=sec\theta}

หาพจน์ที่ 10 

a_{10}=sin\theta sec^9\theta

ตัวอย่างลำดับเรขาคณิต ในรูปของโจทย์ปัญหา

1.) เด็ก 3 คน มีอายุ 1, 5, 13 ปี จงหาว่าอีกกี่ปี อายุของเด็กทั้งสามจะเรียงกันเป็นลำดับเรขาคณิต

วิธีทำ 

ให้ x แทนจำนวนปีที่จะทำให้อายุของเด็กทั้งสามเรียงกันเป็นลำดับเรขาคณิต

จะได้ว่า 1+x, 5+x, 13+x เป็นลำดับเรขาคณิต

หา x  

จากที่เรารู้ว่า r คือ พจน์ขวาหารด้วยพจน์ซ้าย และเป็นค่าคงที่ จะได้ว่า

\frac{5+x}{1+x}=\frac{13+x}{5+x}

(5+x)²  = (1+x)(13+x)

25+10x+x² = 13 + 14x + x²

4x = 12

x   = 3

ดังนั้น อีก 3 ปี เด็กสามคนจะมีอายุเรียงกันเป็นลำดับเรขาคณิต

 

2.) ถังใบหนึ่งบรรจุน้ำมัน 240 ลิตร ตักน้ำมันออก \frac{1}{4} ลิตรของปริมาณน้ำมันที่เหลืออยู่ อยากทราบว่าถ้าตักครบ 6 ครั้งแล้วจะเหลือน้ำมันกี่ลิตร

วิธีทำ โจทย์ถามน้ำมันที่เหลืออยู่ดังนั้น ถ้าตักออก \frac{1}{4} ก็จะเหลือน้ำมัน \frac{3}{4} ของน้ำมันที่เหลืออยู่ก่อนหน้า นั่นคือ

เดิมมีน้ำมัน 240 ลิตร

ตักออกครั้งที่1 เหลือน้ำมัน 240(\frac{3}{4})

ตักออกครั้งที่ 2 เหลือน้ำมัน 240(\frac{3}{4})^{2}

ตักออกครั้งที่3 เหลือน้ำมัน 240(\frac{3}{4})^{3}

นำมาเขียนเป็นลำดับเรขาคณิตได้ดังนี้

240, 240(\frac{3}{4}), 240(\frac{3}{4})^{2}, 240(\frac{3}{4})^{3}, …

จากลำดับจะเห็นว่า a_1=240 และ r=\frac{3}{4}

ดังนั้นถ้าตักออก6 ครั้งก็คือ หา a_7 

a_7=240(\frac{3}{4})^6

 

3.) ลูกบอลตกจากที่สูง 30 ฟุต ถ้าทุกครั้งที่ลูกบอลตกกระทบพื้นจะกระดอนขึ้นไป \frac{4}{5}ของระยะทางที่ลูกบอลตกลงมา จงหาความสูงของลูกบอลจากพื้นเมื่อลูกบอลตกกระทบพื้นครั้งที่ 5

วิธีทำ จากโจทย์ 

ความสูงของบอลตอนยังไม่ตก คือ 30 ฟุต

ความสูงเมื่อลูกบอลกระทบพื้นครั้งที่1 คือ  30(\frac{4}{5}) ฟุต

ความสูงเมื่อลูกบอลกระทบพื้นครั้งที่2 คือ 30(\frac{4}{5})² ฟุต

ความสูงเมื่อลูกบอลกระทบพื้นครั้งที่3 คือ 30(\frac{4}{5})³ ฟุต

เขียนเป็นลำดับเรขาคณิตได้ดังนี้

30, 30(\frac{4}{5}), 30(\frac{4}{5})², 30(\frac{4}{5})³, …

จะได้ว่า  a_1 = 30 และ r=\frac{4}{5}

จากโจทย์ต้องการความสูงเมื่อลูกบอลกระทบพื้นครั้งที่ 5 นั่นคือ หา a_6

หา a_6 จากสิ่งที่โจทย์ให้มาและสูตรลำดับเรขาคณิต จะได้

a_6=30(\frac{4}{5})^5=30(\frac{1024}{3125})=\frac{30720}{3125}\approx 9.83

ดังนั้น ความสูงของลูกบอลเมื่อลูกบอลกระทบพื้นครั้งที่ 5 มีคา่ประมาณ 9.83 ฟุต

 วิดีโอเพิ่มเติมเกี่ยวกับ ลำดับเรขาคณิต

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

should have

I Should Have Done It! โครงสร้างประโยค “รู้งี้”

สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับหลักไวยากรณ์เล็กๆ น้อยๆ ที่ได้ใช้ประโยชน์มากๆ นั่นคือเรื่องการใช้ should have + past participle นั่นเองครับ จะเป็นอย่างไรลองไปดูกันเลยครับ

เรียนรู้เรื่องกาพย์ยานี 11 พร้อมเคล็ดลับการแต่งกาพย์แบบง่ายดาย

บทนำ สวัสดีน้อง ๆ ทุกคน กลับมาพบกันอีกครั้งกับบทเรียนภาษาไทยที่ได้ทั้งสาระความรู้ และความสนุกไปพร้อม ๆ กัน เชื่อว่า น้อง ๆ หลายคนคงเคยได้อ่านหรือได้เรียนเกี่ยวกับการแต่งกาพย์กลอนกันมาบ้างแล้ว ซึ่งหนึ่งในนั้นก็คือ ‘กาพย์ยานี 11’ และต้องบอกว่ากาพย์ชนิดนี้มีวรรณคดีหลาย ๆ เรื่องที่ใช้ในการแต่งบทประพันธ์ หรือเราเองก็มักจะได้เริ่มการแต่งกาพย์ชนิดนี้ก่อนเป็นอันดับแรก ๆ ด้วยรูปแบบของฉันทลักษณ์ที่เข้าใจง่ายไม่ซับซ้อน ไม่ได้กำหนดสระหรือคำเป็นคำตายแต่อย่างใด เพราะฉะนั้น เพื่อเป็นการทบทวน และเพิ่มเติมความรู้ให้กับน้อง

ภาษาถิ่นใต้

ภาษาถิ่นใต้ มรดกทางวัฒณธรรมที่ควรค่าแก่การศึกษา

ภาษาเป็นส่วนหนึ่งของวัฒนธรรม โดยสิ่งที่สะท้อนให้เห็นถึงวัฒนธรรมผ่านภาษามากที่สุด ก็คือ การมีอยู่ของภาษาถิ่น ซึ่งเป็นภาษาที่ใช้พูดติดต่อสื่อสารตามท้องถิ่นต่าง ๆ เพื่อให้คนในพื้นที่เข้าใจกัน ประเทศไทยมีทั้งหมด 6 ภาค ภาษาถิ่นที่เด่นชัดที่สุดจะแบ่งออกเป็นภาษาถิ่นภาคกลางซึ่งครอบคลุมไปถึงภาคตะวันตะวันตก อาจมีแตกต่างบ้างในเรื่องของคำศัพท์บางคำและสำเนียง ภาษาถิ่นเหนือและภาษาถิ่นอีสาน ที่ได้รับอิทธิพลจากประเทศเพื่อนบ้าน และด้วยภูมิภาคที่อยู่ใกล้กันทำให้บางคำก็ใช้ด้วยกัน และสุดท้าย ภาษาถิ่นใต้ ที่ค่อนข้างจะแตกต่างกับภาษาถิ่นอื่น ๆ แต่จะมีลักษณะ และมีคำศัพท์น่ารู้อะไรบ้างนั้น เราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ภาษาถิ่นใต้  

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม เป็นการนำเสนอข้อมูลโดยการเเบ่งพื้นที่ของวงกลมออกเป็นส่วน ๆ เเละมีขนาดของสัดส่วนตามข้อมูลที่ได้ทำการเก็บรวบรวมข้อมูลไว้ การนำเสนอด้วยเเผนภูมิวงกลมเป็นการนำเสนอข้อมูลที่มีอยู่ได้อย่างน่าสนใจ สามารถวิเคราะห์เเละเเปรข้อมูลได้ง่ายขึ้น การสร้างแผนภูมิรูปวงกลมเพื่อนำเสนอข้อมูล การสร้างแผนภูมิวงกลม ทำได้โดยการเเบ่งมุมรอบจุดศูนย์กลางของวงกลมที่มีขนาด 360 องศา ออกเป็นส่วน ๆ ที่เรียกว่า มุมที่จุดศูนย์กลางของวงกลม ตามขนาดที่ได้จากการเทียบส่วนกับปริมาณทั้งหมดในข้อมูล มุมที่จุดศูนย์กลาง = (จำนวนที่สนใจ/จำนวนทั้งหมด) x 360 องศา ตัวอย่างการสร้างแผนภูมิวงกลม จากข้อมูลการสำรวจที่ได้เก็บรวมรวบข้อมูลจากนักเรียนทั้งหมด 200

สำนวนไทยที่เกี่ยวกับศาสนา

สำนวนไทยที่เกี่ยวกับศาสนา ศึกษาที่มาและคุณค่าในสำนวน

  สำนวนไทยที่เกี่ยวกับศาสนา มีอยู่มากมายเลยทีเดียวค่ะ เพราะพุทธศาสนา เป็นศาสนาที่อยู่คู่บ้านคู่เมืองเรามาตั้งแต่อดีตกาล ทำให้มีความเกี่ยวโยงไปถึงสำนวน ซึ่งเป็นเหมือนถ้อยคำที่ใช้สั่งสอนและให้ข้อคิดแก่ผู้คนมายุคต่อยุค บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้ถึงสำนวนไทยที่เกี่ยวกับศาสนา และคุณค่าที่อยู่ในสำนวน ถ้าพร้อมแล้ว ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   สำนวนไทยที่เกี่ยวกับศาสนา   สำนวนไทยที่เกี่ยวกับศาสนา มาจากความเชื่อเรื่องศาสนาพุทธของคนไทย โดยความหมายของสำนวนจะมีทั้งสำนวนที่ยังมีเค้าของความหมายเดิม และสำนวนที่ความหมายเปลี่ยนไป   ตัวอย่างสำนวนไทยที่เกี่ยวกับศาสนา  

ศิลาจารึกหลักที่ 1 ถอดความหมายพร้อมเรียนรู้คุณค่าในเรื่อง

ศิลาจารึกหลักที่ 1มีความเป็นมาอย่างไร น้อง ๆ ก็คงจะได้เรียนรู้กันไปแล้ว วันนี้เรื่องที่เราจะมาศึกษากันต่อก็คือเนื้อหาเด่น ๆ ที่น่าสนใจและคุณค่าที่อยู่ในศิลาจารึกหลักที่ 1 กันค่ะ ไปดูพร้อมๆ กันเลยว่าในศิลาจารึกจะบันทึกเรื่องเล่าอะไรไว้บ้าง และมีคุณค่าด้านใด   ศิลาจารึกหลักที่ 1 : ตัวบทที่น่าสนใจ       พ่อกูชื่อศรีอินทราทิตย์ แม่กูชื่อนางเสือง พี่กูชื่อบานเมือง ตูมีพี่น้องท้องเดียวห้าคน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1